Suppr超能文献

位于低渗透性沉积物中有机液体的原位氧化及相关的质量通量减少/去除行为。

In situ oxidation and associated mass-flux-reduction/mass-removal behavior for systems with organic liquid located in lower-permeability sediments.

机构信息

Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721-0038, USA.

出版信息

J Contam Hydrol. 2010 Sep 20;117(1-4):82-93. doi: 10.1016/j.jconhyd.2010.07.002. Epub 2010 Jul 21.

Abstract

The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.

摘要

在一系列流动池实验中,研究了高锰酸盐用于原位化学氧化位于高渗透性基质内低渗透性(K)区中捕获的有机液体(三氯乙烯)的有效性。高锰酸盐溶液以连续和脉冲注入模式应用。通过使用 SEM-EDS 确认了锰氧化物沉淀,该沉淀发生在低 K 区内部、附近和下游,反映了三氯乙烯的氧化。在流动中断期间,在周围高渗透性基质内形成沉淀,表明从低 K 区水相向三氯乙烯的扩散通量。通过在高锰酸盐注入后进行水驱,检查了高锰酸盐处理对质量通量行为的影响。将结果与水驱对照实验进行了比较。对于所有特征为完全去除的高锰酸盐处理,完全去除污染物所需的冲洗水量减少。然而,在水驱过程中观察到的质量通量减少/去除质量关系的性质随特定高锰酸盐处理的不同而变化。

相似文献

1
In situ oxidation and associated mass-flux-reduction/mass-removal behavior for systems with organic liquid located in lower-permeability sediments.
J Contam Hydrol. 2010 Sep 20;117(1-4):82-93. doi: 10.1016/j.jconhyd.2010.07.002. Epub 2010 Jul 21.
2
Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.
J Contam Hydrol. 2014 Sep;165:11-23. doi: 10.1016/j.jconhyd.2014.07.003. Epub 2014 Jul 15.
3
In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties.
J Contam Hydrol. 2001 Jul;50(1-2):79-98. doi: 10.1016/s0169-7722(01)00098-5.
4
Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.
J Hazard Mater. 2014 Mar 15;268:177-84. doi: 10.1016/j.jhazmat.2014.01.007. Epub 2014 Jan 9.
5
Mass removal of chlorinated ethenes from rough-walled fractures using permanganate.
J Contam Hydrol. 2004 Nov;75(1-2):91-114. doi: 10.1016/j.jconhyd.2004.04.006.
6
Permanganate diffusion and reaction in sedimentary rocks.
J Contam Hydrol. 2014 Apr;159:36-46. doi: 10.1016/j.jconhyd.2014.01.010. Epub 2014 Feb 12.
7
Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
Water Res. 2008 Feb;42(3):605-14. doi: 10.1016/j.watres.2007.08.010. Epub 2007 Aug 17.
9
Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept.
Chemosphere. 2004 Jan;54(3):419-23. doi: 10.1016/S0045-6535(03)00752-5.
10
Geochemical effects on metals following permanganate oxidation of DNAPLs.
Ground Water. 2003 Jul-Aug;41(4):458-69. doi: 10.1111/j.1745-6584.2003.tb02380.x.

引用本文的文献

1
PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems.
Environ Sci Technol. 2022 Oct 4;56(19):13675-13685. doi: 10.1021/acs.est.2c02193. Epub 2022 Sep 20.
2
Strategies for Managing Risk due to Back Diffusion.
Ground Water Monit Remediat. 2020;41(1):76-98. doi: 10.1111/gwmr.12423.

本文引用的文献

2
Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
J Contam Hydrol. 2008 Nov 14;102(1-2):154-71. doi: 10.1016/j.jconhyd.2008.07.001. Epub 2008 Jul 11.
3
Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.
J Contam Hydrol. 2008 May 26;98(1-2):22-35. doi: 10.1016/j.jconhyd.2008.02.004. Epub 2008 Mar 4.
4
Mass-removal and mass-flux-reduction behavior for idealized source zones with hydraulically poorly-accessible immiscible liquid.
Chemosphere. 2008 Apr;71(8):1511-21. doi: 10.1016/j.chemosphere.2007.11.064. Epub 2008 Feb 14.
5
A review of NAPL source zone remediation efficiency and the mass flux approach.
J Hazard Mater. 2004 Jul 5;110(1-3):13-27. doi: 10.1016/j.jhazmat.2004.02.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验