Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
Biosens Bioelectron. 2010 Dec 15;26(4):1688-91. doi: 10.1016/j.bios.2010.07.005. Epub 2010 Jul 8.
The study demonstrates an electrochemical approach for direct sensing of L-Cysteine at gallium nitride nanowires (GaNNWs), a wide band gap semiconductor possessing 1-dimensional nanomaterial-specific high surface-sensitivity and unusually high surface-conductivity. Pristine GaNNWs can respond to L-Cysteine oxidation without any surface-modification: a unique advantage compared with other common electrodes. Cyclic voltammetric investigations on the effects of pH and potential-scan rate reveal an electrocatalytic oxidation of L-Cysteine controlled by the electroactive L-CyS(-) species. Advantages of direct L-Cysteine oxidation at surface-dominated GaNNWs electrodes can achieve an optimum sensitivity of 42 nA/μM with an experimental detection limit of 0.5 μM, over 0.5-75 μM dynamic range, under physiological condition (pH=7.4).
该研究展示了一种电化学方法,用于在氮化镓纳米线(GaNNWs)上直接感应 L-半胱氨酸,氮化镓是一种具有 1 维纳米材料特定的高表面灵敏度和异常高表面电导率的宽带隙半导体。未经表面修饰的纯净 GaNNWs 可以响应 L-半胱氨酸的氧化:与其他常见电极相比,这是一个独特的优势。循环伏安法研究 pH 值和电位扫描速率的影响表明,L-半胱氨酸的电催化氧化受电化学活性 L-CyS(-) 物种的控制。在以表面为主导的 GaNNWs 电极上直接氧化 L-半胱氨酸的优势可以实现最佳灵敏度为 42 nA/μM,实验检测限为 0.5 μM,在 0.5-75 μM 的动态范围内,在生理条件(pH=7.4)下。