Suppr超能文献

动态荧光各向异性:探究核糖体上蛋白质折叠的有力工具。

Dynamic fluorescence depolarization: a powerful tool to explore protein folding on the ribosome.

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.

出版信息

Methods. 2010 Sep;52(1):57-73. doi: 10.1016/j.ymeth.2010.06.001. Epub 2010 Jun 8.

Abstract

Protein folding is a fundamental biological process of great significance for cell function and life-related processes. Surprisingly, very little is presently known about how proteins fold in vivo. The influence of the cellular environment is of paramount importance, as molecular chaperones, the ribosome, and the crowded medium affect both folding pathways and potentially even equilibrium structures. Studying protein folding in physiologically relevant environments, however, poses a number of technical challenges due to slow tumbling rates, low concentrations and potentially non-homogenous populations. Early work in this area relied on biological assays based on antibody recognition, proteolysis, and activity studies. More recently, it has been possible to directly observe the structure and dynamics of nascent polypeptides at high resolution by spectroscopic and microscopic techniques. The fluorescence depolarization decay of nascent polypeptides labeled with a small extrinsic fluorophore is a particularly powerful tool to gain insights into the dynamics of newly synthesized proteins. The fluorophore label senses both its own local mobility and the motions of the macromolecule to which it is attached. Fluorescence anisotropy decays can be measured both in the time and frequency domains. The latter mode of data collection is extremely convenient to capture the nanosecond motions in ribosome-bound nascent proteins, indicative of the development of independent structure and folding on the ribosome. In this review, we discuss the theory of fluorescence depolarization and its exciting applications to the study of the dynamics of nascent proteins in the cellular environment.

摘要

蛋白质折叠是一个非常重要的生物学过程,对细胞功能和与生命相关的过程都有重要意义。令人惊讶的是,目前对于蛋白质在体内是如何折叠的知之甚少。细胞环境的影响至关重要,因为分子伴侣、核糖体和拥挤的介质会影响折叠途径,甚至可能影响平衡结构。然而,由于旋转速率慢、浓度低以及潜在的非均相群体等原因,在生理相关环境中研究蛋白质折叠存在许多技术挑战。在这一领域的早期工作依赖于基于抗体识别、蛋白水解和活性研究的生物测定。最近,通过光谱和显微镜技术,已经可以直接观察到新生多肽的结构和动力学,达到高分辨率。用小的外源性荧光团标记的新生多肽的荧光各向异性衰减是一种特别强大的工具,可以深入了解新合成蛋白质的动力学。荧光团标记既能感知自身的局部流动性,也能感知与其相连的大分子的运动。荧光各向异性衰减可以在时间域和频率域中进行测量。后一种数据采集模式非常方便,可以捕获核糖体结合的新生蛋白质中的纳秒运动,这表明核糖体上独立结构和折叠的发展。在这篇综述中,我们讨论了荧光各向异性衰减的理论及其在研究细胞环境中新生蛋白质动力学方面的令人兴奋的应用。

相似文献

1
Dynamic fluorescence depolarization: a powerful tool to explore protein folding on the ribosome.
Methods. 2010 Sep;52(1):57-73. doi: 10.1016/j.ymeth.2010.06.001. Epub 2010 Jun 8.
3
Fluorescence Anisotropy Decays and Microscale-Volume Viscometry Reveal the Compaction of Ribosome-Bound Nascent Proteins.
J Phys Chem B. 2021 Jun 24;125(24):6543-6558. doi: 10.1021/acs.jpcb.1c04473. Epub 2021 Jun 10.
4
Chain dynamics of nascent polypeptides emerging from the ribosome.
ACS Chem Biol. 2008 Sep 19;3(9):555-66. doi: 10.1021/cb800059u. Epub 2008 Aug 22.
5
Nanosecond dynamics of calmodulin and ribosome-bound nascent chains studied by time-resolved fluorescence anisotropy.
Chembiochem. 2014 May 5;15(7):977-85. doi: 10.1002/cbic.201400014. Epub 2014 Mar 18.
6
Folding on the assembly line.
ACS Chem Biol. 2008 Sep 19;3(9):527-9. doi: 10.1021/cb800216n.
7
Production of ribosome-released nascent proteins with optimal physical properties.
Anal Chem. 2010 Jun 1;82(11):4637-43. doi: 10.1021/ac902952b.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
Folding up and Moving on-Nascent Protein Folding on the Ribosome.
J Mol Biol. 2018 Oct 26;430(22):4580-4591. doi: 10.1016/j.jmb.2018.06.050. Epub 2018 Jul 5.

引用本文的文献

1
Fluorescence Anisotropy for Detailed Analysis of Doxorubicin Loading into DNA Origami Nanocarriers for Drug Delivery.
ACS Appl Nano Mater. 2025 Jun 24;8(26):13274-13284. doi: 10.1021/acsanm.5c01518. eCollection 2025 Jul 4.
3
Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex.
ACS Cent Sci. 2024 Feb 1;10(2):385-401. doi: 10.1021/acscentsci.3c00777. eCollection 2024 Feb 28.
4
Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System.
J Phys Chem B. 2023 May 11;127(18):3990-4014. doi: 10.1021/acs.jpcb.2c08485. Epub 2023 May 2.
5
Fluorescence Anisotropy Decays and Microscale-Volume Viscometry Reveal the Compaction of Ribosome-Bound Nascent Proteins.
J Phys Chem B. 2021 Jun 24;125(24):6543-6558. doi: 10.1021/acs.jpcb.1c04473. Epub 2021 Jun 10.
6
Unraveling co-translational protein folding: Concepts and methods.
Methods. 2018 Mar 15;137:71-81. doi: 10.1016/j.ymeth.2017.11.007. Epub 2017 Dec 6.
7
Nonorthogonal tRNA(cys)(Amber) for protein and nascent chain labeling.
RNA. 2015 Sep;21(9):1672-82. doi: 10.1261/rna.051805.115. Epub 2015 Jul 20.
9
Protein folding at the exit tunnel.
Annu Rev Biophys. 2011;40:337-59. doi: 10.1146/annurev-biophys-042910-155338.
10
Protein folding in the cell: challenges and progress.
Curr Opin Struct Biol. 2011 Feb;21(1):32-41. doi: 10.1016/j.sbi.2010.11.001. Epub 2010 Nov 26.

本文引用的文献

1
Production of ribosome-released nascent proteins with optimal physical properties.
Anal Chem. 2010 Jun 1;82(11):4637-43. doi: 10.1021/ac902952b.
3
alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel.
Nat Struct Mol Biol. 2010 Mar;17(3):313-7. doi: 10.1038/nsmb.1756. Epub 2010 Feb 7.
4
Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22239-44. doi: 10.1073/pnas.0903750106. Epub 2009 Dec 17.
6
Large-scale purification of ribosome-nascent chain complexes for biochemical and structural studies.
FEBS Lett. 2009 Jul 21;583(14):2407-13. doi: 10.1016/j.febslet.2009.06.041. Epub 2009 Jun 26.
8
Probing side-chain dynamics of a ribosome-bound nascent chain using methyl NMR spectroscopy.
J Am Chem Soc. 2009 Jun 24;131(24):8366-7. doi: 10.1021/ja902778n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验