Suppr超能文献

豚鼠的眼-头协调 I. 对被动全身旋转的反应。

Eye-head coordination in the guinea pig I. Responses to passive whole-body rotations.

机构信息

Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Exp Brain Res. 2010 Sep;205(3):395-404. doi: 10.1007/s00221-010-2374-4. Epub 2010 Aug 5.

Abstract

Vestibular reflexes act to stabilize the head and eyes in space during locomotion. Head stability is essential for postural control, whereas retinal image stability enhances visual acuity and may be essential for an animal to distinguish self-motion from that of an object in the environment. Guinea pig eye and head movements were measured during passive whole-body rotation in order to assess the efficacy of vestibular reflexes. The vestibulo-ocular reflex (VOR) produced compensatory eye movements with a latency of approximately 7 ms that compensated for 46% of head movement in the dark and only slightly more in the light (54%). Head movements, in response to abrupt body rotations, also contributed to retinal stability (21% in the dark; 25% in the light) but exhibited significant variability. Although compensatory eye velocity produced by the VOR was well correlated with head-in-space velocity, compensatory head-on-body speed and direction were variable and poorly correlated with body speed. The compensatory head movements appeared to be determined by passive biomechanical (e.g., inertial effects, initial tonus) and active mechanisms (the vestibulo-collic reflex or VCR). Chemically induced, bilateral lesions of the peripheral vestibular system abolished both compensatory head and eye movement responses.

摘要

前庭反射在运动过程中有助于稳定头部和眼睛在空间中的位置。头部稳定性对于姿势控制至关重要,而视网膜图像稳定性则提高了视力,对于动物区分自身运动和环境中物体的运动可能是必要的。为了评估前庭反射的效果,在被动全身旋转过程中测量了豚鼠的眼睛和头部运动。前庭眼反射 (VOR) 产生了具有约 7 毫秒潜伏期的代偿性眼球运动,在黑暗中补偿了头部运动的 46%,在光线下仅略多 (54%)。头部运动对突然的身体旋转也有助于视网膜稳定(黑暗中为 21%;光线下为 25%),但存在显著的可变性。尽管 VOR 产生的代偿性眼球速度与头部在空间中的速度高度相关,但代偿性头部在身体上的速度和方向是可变的,与身体速度相关性较差。代偿性头部运动似乎是由被动生物力学(例如惯性效应、初始紧张度)和主动机制(前庭-橄榄反射或 VCR)决定的。外周前庭系统的化学诱导双侧损伤消除了代偿性头部和眼球运动反应。

相似文献

1
Eye-head coordination in the guinea pig I. Responses to passive whole-body rotations.
Exp Brain Res. 2010 Sep;205(3):395-404. doi: 10.1007/s00221-010-2374-4. Epub 2010 Aug 5.
3
Eye-head coordination in the guinea pig II. Responses to self-generated (voluntary) head movements.
Exp Brain Res. 2010 Sep;205(4):445-54. doi: 10.1007/s00221-010-2375-3. Epub 2010 Aug 10.
5
Vestibular and non-vestibular contributions to eye movements that compensate for head rotations during viewing of near targets.
Exp Brain Res. 2005 Sep;165(3):294-304. doi: 10.1007/s00221-005-2305-y. Epub 2005 May 11.
6
Early components of the human vestibulo-ocular response to head rotation: latency and gain.
J Neurophysiol. 2000 Jul;84(1):376-89. doi: 10.1152/jn.2000.84.1.376.
7
Selective processing of vestibular reafference during self-generated head motion.
J Neurosci. 2001 Mar 15;21(6):2131-42. doi: 10.1523/JNEUROSCI.21-06-02131.2001.
8
Anticipatory eye movements stabilize gaze during self-generated head movements.
Ann N Y Acad Sci. 2011 Sep;1233:219-25. doi: 10.1111/j.1749-6632.2011.06165.x.

引用本文的文献

1
Genetically Defined Functional Modules for Spatial Orienting in the Mouse Superior Colliculus.
Curr Biol. 2019 Sep 9;29(17):2892-2904.e8. doi: 10.1016/j.cub.2019.07.083. Epub 2019 Aug 29.
2
The Interaction of Pre-programmed Eye Movements With the Vestibulo-Ocular Reflex.
Front Syst Neurosci. 2018 Mar 9;12:4. doi: 10.3389/fnsys.2018.00004. eCollection 2018.
4
Getting ahead of oneself: anticipation and the vestibulo-ocular reflex.
Neuroscience. 2013 Apr 16;236:210-9. doi: 10.1016/j.neuroscience.2012.12.032. Epub 2013 Jan 29.
6
Anticipatory eye movements stabilize gaze during self-generated head movements.
Ann N Y Acad Sci. 2011 Sep;1233:219-25. doi: 10.1111/j.1749-6632.2011.06165.x.
7
Eye-head coordination in the guinea pig II. Responses to self-generated (voluntary) head movements.
Exp Brain Res. 2010 Sep;205(4):445-54. doi: 10.1007/s00221-010-2375-3. Epub 2010 Aug 10.

本文引用的文献

1
Postural compensation for vestibular loss and implications for rehabilitation.
Restor Neurol Neurosci. 2010;28(1):57-68. doi: 10.3233/RNN-2010-0515.
3
Eye-head coordination in monkeys: evidence for centrally patterned organization.
Science. 1971 Jul 30;173(3995):452-4. doi: 10.1126/science.173.3995.452.
4
Dynamics and directionality of the vestibulo-collic reflex (VCR) in mice.
Exp Brain Res. 2005 Nov;167(1):108-13. doi: 10.1007/s00221-005-0031-0. Epub 2005 Oct 29.
5
Vestibulo-collic reflex (VCR) in mice.
Exp Brain Res. 2005 Nov;167(1):103-7. doi: 10.1007/s00221-005-0030-1. Epub 2005 Oct 29.
6
Click-evoked myogenic potentials recorded on alert guinea pigs.
Hear Res. 2005 Jul;205(1-2):277-83. doi: 10.1016/j.heares.2005.03.029.
7
Signal processing in the vestibular system during active versus passive head movements.
J Neurophysiol. 2004 May;91(5):1919-33. doi: 10.1152/jn.00988.2003.
8
A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD.
IEEE Trans Biomed Eng. 1963 Oct;10:137-45. doi: 10.1109/tbmel.1963.4322822.
9
Effect of trans-bullar gentamicin treatment on guinea pig angular and linear vestibulo-ocular reflexes.
Exp Brain Res. 2003 Oct;152(3):293-306. doi: 10.1007/s00221-003-1531-4. Epub 2003 Jul 31.
10
Rapid motor learning in the translational vestibulo-ocular reflex.
J Neurosci. 2003 May 15;23(10):4288-98. doi: 10.1523/JNEUROSCI.23-10-04288.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验