Department of Paediatrics, Royal Hobart Hospital and University of Tasmania, Liverpool Street, Hobart, TAS, 7000, Australia.
Intensive Care Med. 2010 Nov;36(11):1953-61. doi: 10.1007/s00134-010-1995-1. Epub 2010 Aug 6.
To determine whether, during mechanical ventilation, an optimal positive end-expiratory pressure (PEEP) can be identified by measurement of regional tidal volume and compliance [V (T(reg)), C (RS(reg))].
Sixteen anaesthetized intubated neonatal piglets underwent a stepwise vital capacity manoeuvre performed during pressure control ventilation, with 5 cmH₂O PEEP increments to 25 cmH₂O, and decrements to 0 cmH₂O. Peak inflating pressure was 10 cmH₂O above PEEP throughout. The manoeuvre was performed in the normal lung, after repeated saline lavage and after surfactant therapy. Global V (T) and C (RS) were measured at the airway opening; V (T(reg)) and C (RS(reg)) were measured in the ventral, medial and dorsal lung using electrical impedance tomography (EIT).
Most uniform distribution of regional tidal ventilation was noted during PEEP decrements after lung recruitment, at varying PEEP levels. In the lavaged and surfactant-treated lung the PEEP optimal for ventilation distribution was also associated with highest mean V (T(reg)) [lavaged: 95 ± 9.3% of maximum, mean ± standard deviation (SD); surfactant-treated: 92 ± 17%] and global V (T) (96 ± 10%; 96 ± 15%). Regional C (RS) plots clearly demonstrated co-existent ventral overdistension and dorsal recruitment, particularly during PEEP increments; whereas during PEEP decrements, peak C (RS(reg)) values showed considerable interregional concordance [e.g. peak C (RS(reg)) in the lavaged left lung; ventral: 0.017 ± 0.0036; medial: 0.016 ± 0.0054; dorsal: 0.017 ± 0.0073 cmH₂O⁻¹; P = 0.98, analysis of variance (ANOVA)].
After lung recruitment, a PEEP level can be identified by EIT at which tidal ventilation is uniformly distributed, with associated concordance in compliance between lung regions. Bedside monitoring of regional tidal ventilation and compliance using EIT may thus aid in PEEP selection.
通过测量区域潮气量和顺应性(V(T(reg)),C(RS(reg)))来确定机械通气期间是否可以确定最佳呼气末正压(PEEP)。
16 只麻醉插管的新生仔猪在压力控制通气下进行逐步肺活量操作,每次增加 5cmH₂O 的 PEEP 至 25cmH₂O,并减少至 0cmH₂O。整个过程中,峰压比 PEEP 高 10cmH₂O。该操作在正常肺、反复盐水灌洗和表面活性剂治疗后进行。在气道开口处测量总潮气量(V(T))和总顺应性(C(RS));使用电阻抗断层成像(EIT)在腹侧、内侧和背侧肺测量区域潮气量(V(T(reg)))和区域顺应性(C(RS(reg)))。
在肺复张后降低 PEEP 时,在不同的 PEEP 水平下,区域潮气量的分布最为均匀。在灌洗和表面活性剂处理的肺中,通气分布最佳的 PEEP 也与最高平均 V(T(reg))相关[灌洗:95±9.3%的最大值,平均值±标准偏差(SD);表面活性剂处理:92±17%]和总 V(T)(96±10%;96±15%)。区域 C(RS)图清楚地显示了腹侧过度膨胀和背侧复张同时存在,特别是在 PEEP 增加时;然而,在降低 PEEP 时,峰值 C(RS(reg))值显示出相当大的区域间一致性[例如,灌洗后的左肺峰值 C(RS(reg));腹侧:0.017±0.0036;内侧:0.016±0.0054;背侧:0.017±0.0073cmH₂O⁻¹;P=0.98,方差分析(ANOVA)]。
在肺复张后,EIT 可以确定一个 PEEP 水平,在此水平下,潮气量分布均匀,肺区域之间的顺应性也一致。因此,使用 EIT 对区域潮气量和顺应性进行床边监测可能有助于选择 PEEP。