School of Mathematical Sciences, University of Adelaide, SA 5005, Australia.
J Theor Biol. 2010 Oct 21;266(4):657-66. doi: 10.1016/j.jtbi.2010.07.035. Epub 2010 Aug 4.
The speed and the minimum carrying capacity needed for a successful population expansion into new territory are addressed using a reaction-diffusion model. The model is able to encapsulate a rich collection of ecological behaviours, including the Allee effect, resource depletion due to consumption, dispersal adaptation due to population pressure, biological control agents, and a range of breeding suppression mechanisms such as embryonic diapause, delayed development and sperm storage. It is shown how many of these phenomena can be characterised as density-dependence in a few fundamental ecological parameters. With the help of a powerful mathematical technique recently developed by Balasuriya and Gottwald (J. Math. Biol. 61, pp. 377-399, 2010), explicit formulae for the effect on the speed and minimum carrying capacity are obtained.
使用反应-扩散模型来解决成功向新领地扩张所需的速度和最小承载能力。该模型能够包含丰富的生态行为集合,包括阿利效应、因消耗而导致的资源枯竭、因种群压力而导致的扩散适应、生物控制剂以及一系列繁殖抑制机制,如胚胎休眠、延迟发育和精子储存。本文展示了这些现象中有多少可以用几个基本生态参数来描述为密度依赖性。借助最近由 Balasuriya 和 Gottwald(J. Math. Biol. 61,第 377-399 页,2010 年)开发的强大数学技术,获得了对速度和最小承载能力的影响的显式公式。