Suppr超能文献

使用声触发全氟戊烷乳剂递送氯苯丁酸。

Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Ultrasound Med Biol. 2010 Aug;36(8):1364-75. doi: 10.1016/j.ultrasmedbio.2010.04.019.

Abstract

Ultrasound-mediated delivery systems have mainly focused on microbubble contrast agents as carriers of drugs or genetic material. This study uses micron-sized, perfluoropentane (PFP) emulsions as carriers of chlorambucil (CHL), a lipophilic chemotherapeutic. The release of CHL is achieved via acoustic droplet vaporization (ADV), whereby the superheated emulsion is converted into gas bubbles using ultrasound. Emulsions were made using an albumin shell and soybean oil as the CHL carrier. The ratio of the PFP to soybean oil phases in the droplets and the fraction of droplets that vaporize per ultrasound exposure were shown to correlate with droplet diameter. A 60-min incubation with the CHL-loaded emulsion caused a 46.7% cellular growth inhibition, whereas incubation with the CHL-loaded emulsion that was exposed to ultrasound at 6.3 MHz caused an 84.3% growth inhibition. This difference was statistically significant (p < 0.01), signifying that ADV can be used as a method to substantially enhance drug delivery.

摘要

超声介导的递送系统主要集中在微泡造影剂作为药物或遗传物质的载体。本研究使用微米级的全氟戊烷 (PFP) 乳剂作为氯苯丁酸 (CHL) 的载体,CHL 是一种亲脂性化疗药物。CHL 的释放是通过声致液滴汽化 (ADV) 实现的,即通过超声将过热的乳液转化为气泡。乳液使用白蛋白壳和大豆油作为 CHL 载体。乳滴中 PFP 与大豆油相的比例以及每超声暴露时汽化的乳滴分数与液滴直径相关。用负载 CHL 的乳液孵育 60 分钟导致细胞生长抑制率为 46.7%,而用在 6.3 MHz 下暴露于超声的负载 CHL 的乳液孵育则导致 84.3%的生长抑制。这种差异具有统计学意义 (p < 0.01),表明 ADV 可用作大幅增强药物递送的方法。

相似文献

1
Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion.
Ultrasound Med Biol. 2010 Aug;36(8):1364-75. doi: 10.1016/j.ultrasmedbio.2010.04.019.
2
Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions.
Pharm Res. 2010 Dec;27(12):2753-65. doi: 10.1007/s11095-010-0277-5. Epub 2010 Sep 25.
3
Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets.
J Acoust Soc Am. 2013 Aug;134(2):1610-21. doi: 10.1121/1.4812882.
4
Pharmacokinetics and pharmacodynamics of chlorambucil delivered in parenteral emulsion.
Int J Pharm. 2008 Aug 6;360(1-2):115-21. doi: 10.1016/j.ijpharm.2008.04.027. Epub 2008 Apr 22.
6
Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications.
Langmuir. 2011 Nov 1;27(21):13183-8. doi: 10.1021/la203212p. Epub 2011 Oct 4.
8
Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles.
AAPS PharmSciTech. 2017 Nov;18(8):2977-2986. doi: 10.1208/s12249-017-0782-5. Epub 2017 May 5.
9
Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions.
J Control Release. 2011 Jul 15;153(1):4-15. doi: 10.1016/j.jconrel.2011.01.022. Epub 2011 Jan 26.
10
Parametric Study of Acoustic Droplet Vaporization Thresholds and Payload Release From Acoustically-Responsive Scaffolds.
Ultrasound Med Biol. 2019 Sep;45(9):2471-2484. doi: 10.1016/j.ultrasmedbio.2019.05.024. Epub 2019 Jun 22.

引用本文的文献

2
Acoustic Droplet Vaporization Efficiency and Oxygen Scavenging in Whole Blood.
Ultrasound Med Biol. 2025 Feb;51(2):402-413. doi: 10.1016/j.ultrasmedbio.2024.09.024. Epub 2024 Nov 19.
3
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
4
Smart nanogels for cancer treatment from the perspective of functional groups.
Front Bioeng Biotechnol. 2024 Jan 10;11:1329311. doi: 10.3389/fbioe.2023.1329311. eCollection 2023.
6
Medical ultrasound: Time-honored method or emerging research frontier?
Z Med Phys. 2023 Aug;33(3):251-254. doi: 10.1016/j.zemedi.2023.05.005. Epub 2023 Jun 10.
7
Thermal and Acoustic Stabilization Of Volatile Phase-Change Contrast Agents Via Layer-By-Layer Assembly.
Ultrasound Med Biol. 2023 May;49(5):1058-1069. doi: 10.1016/j.ultrasmedbio.2022.12.002. Epub 2023 Feb 14.
9
Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels.
Gels. 2022 Sep 1;8(9):554. doi: 10.3390/gels8090554.
10

本文引用的文献

1
In vitro comparison of dodecafluoropentane (DDFP), perfluorodecalin (PFD), and perfluoroctylbromide (PFOB) in the facilitation of oxygen exchange.
Artif Cells Blood Substit Immobil Biotechnol. 2009;37(4):156-62. doi: 10.1080/10731190903043192. Epub 2009 Jun 22.
2
Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles.
J Control Release. 2009 Sep 15;138(3):268-76. doi: 10.1016/j.jconrel.2009.05.026. Epub 2009 May 25.
3
The role of inertial cavitation in acoustic droplet vaporization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):1006-17. doi: 10.1109/TUFFC.2009.1132.
4
Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents.
Ultrasonics. 2009 Dec;49(8):628-33. doi: 10.1016/j.ultras.2009.03.003. Epub 2009 Mar 28.
5
Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery.
J Pharm Sci. 2009 Oct;98(10):3735-47. doi: 10.1002/jps.21687.
6
Ultrasound-mediated drug delivery.
IEEE Eng Med Biol Mag. 2009 Jan-Feb;28(1):64-75. doi: 10.1109/MEMB.2008.931017.
7
Microbubbles as ultrasound triggered drug carriers.
J Pharm Sci. 2009 Jun;98(6):1935-61. doi: 10.1002/jps.21571.
8
Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs.
J Control Release. 2009 Jan 19;133(2):109-18. doi: 10.1016/j.jconrel.2008.09.085. Epub 2008 Oct 9.
9
Ultrasound-mediated release of hydrophilic and lipophilic agents from echogenic liposomes.
J Ultrasound Med. 2008 Nov;27(11):1597-606. doi: 10.7863/jum.2008.27.11.1597.
10
CHO cell responses to low oxygen: regulation of oxygen consumption and sensitization to oxidative stress.
Biotechnol Bioeng. 1992 Aug 5;40(4):505-16. doi: 10.1002/bit.260400409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验