Suppr超能文献

设计赝表面等离激元结构对太赫兹激光光束进行准直。

Designer spoof surface plasmon structures collimate terahertz laser beams.

出版信息

Nat Mater. 2010 Sep;9(9):730-5. doi: 10.1038/nmat2822. Epub 2010 Aug 8.

Abstract

Surface plasmons have found a broad range of applications in photonic devices at visible and near-infrared wavelengths. In contrast, longer-wavelength surface electromagnetic waves, known as Sommerfeld or Zenneck waves, are characterized by poor confinement to surfaces and are therefore difficult to control using conventional metallo-dielectric plasmonic structures. However, patterning the surface with subwavelength periodic features can markedly reduce the asymptotic surface plasmon frequency, leading to 'spoof' surface plasmons with subwavelength confinement at infrared wavelengths and beyond, which mimic surface plasmons at much shorter wavelengths. We demonstrate that by directly sculpting designer spoof surface plasmon structures that tailor the dispersion of terahertz surface plasmon polaritons on the highly doped semiconductor facets of terahertz quantum cascade lasers, the performance of the lasers can be markedly enhanced. Using a simple one-dimensional grating design, the beam divergence of the lasers was reduced from approximately 180 degrees to approximately 10 degrees, the directivity was improved by over 10 decibels and the power collection efficiency was increased by a factor of about six compared with the original unpatterned devices. We achieve these improvements without compromising high-temperature performance of the lasers.

摘要

表面等离激元在可见光和近红外波长的光子器件中有广泛的应用。相比之下,较长波长的表面电磁波,称为 Sommerfeld 波或 Zenneck 波,其特点是对表面的限制较差,因此很难使用传统的金属-电介质等离子体波导结构来控制。然而,通过在表面上形成亚波长周期性结构,可以显著降低渐近表面等离子体频率,从而在红外波长及以上产生具有亚波长限制的“赝”表面等离激元,这些赝表面等离激元模拟了在更短波长下的表面等离激元。我们证明,通过直接雕刻设计的赝表面等离激元结构,可以调整太赫兹量子级联激光器的高掺杂半导体面的太赫兹表面等离激子极化激元的色散特性,从而显著提高激光器的性能。使用简单的一维光栅设计,将激光器的光束发散角从大约 180 度降低到大约 10 度,方向性提高了 10 分贝以上,与原始未图案化器件相比,功率收集效率提高了约六倍。我们在不影响激光器高温性能的情况下实现了这些改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验