Suppr超能文献

基于II型狄拉克费米子的高频整流器。

High-frequency rectifiers based on type-II Dirac fermions.

作者信息

Zhang Libo, Chen Zhiqingzi, Zhang Kaixuan, Wang Lin, Xu Huang, Han Li, Guo Wanlong, Yang Yao, Kuo Chia-Nung, Lue Chin Shan, Mondal Debashis, Fuji Jun, Vobornik Ivana, Ghosh Barun, Agarwal Amit, Xing Huaizhong, Chen Xiaoshuang, Politano Antonio, Lu Wei

机构信息

State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China.

Department of Optoelectronic Science and Engineering, Donghua University, Shanghai, China.

出版信息

Nat Commun. 2021 Mar 11;12(1):1584. doi: 10.1038/s41467-021-21906-w.

Abstract

The advent of topological semimetals enables the exploitation of symmetry-protected topological phenomena and quantized transport. Here, we present homogeneous rectifiers, converting high-frequency electromagnetic energy into direct current, based on low-energy Dirac fermions of topological semimetal-NiTe, with state-of-the-art efficiency already in the first implementation. Explicitly, these devices display room-temperature photosensitivity as high as 251 mA W at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of 22, originating from the interplay between the spin-polarized surface and bulk states. Device performances in terms of broadband operation, high dynamic range, as well as their high sensitivity, validate the immense potential and unique advantages associated to the control of nonequilibrium gapless topological states via built-in electric field, electromagnetic polarization and symmetry breaking in topological semimetals. These findings pave the way for the exploitation of topological phase of matter for high-frequency operations in polarization-sensitive sensing, communications and imaging.

摘要

拓扑半金属的出现使得人们能够利用对称性保护的拓扑现象和量子化输运。在此,我们展示了基于拓扑半金属NiTe的低能狄拉克费米子的均质整流器,它能将高频电磁能转换为直流电,在首次实现时就具备了领先的效率。具体而言,这些器件在无偏置模式下,于0.3太赫兹频率处展现出高达251毫安每瓦的室温光敏性,光电流各向异性比为22,这源于自旋极化表面态与体态之间的相互作用。在宽带运行、高动态范围以及高灵敏度方面的器件性能,证实了通过内置电场、电磁极化和拓扑半金属中的对称性破缺来控制非平衡无隙拓扑态所具有的巨大潜力和独特优势。这些发现为利用物质的拓扑相进行极化敏感传感、通信和成像中的高频操作铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/928e/7952558/05ede725ef8d/41467_2021_21906_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验