Department of Chemical & Materials Engineering, P.O. Box 441021, University of Idaho, Moscow, Idaho 83844-1021, USA.
Langmuir. 2010 Aug 17;26(16):13550-5. doi: 10.1021/la1017399.
Titania-poly(vinylpyrrolidone) (PVP) core-shell nano/microfibers are electrospun on substrates of differing hydrophilicity and conductivity in order to investigate the connection between these substrate properties and the apparent water contact angles against the fiber mats. The focus of this study compares current data from silicon- and aluminum foil-supported mats to extant data from ITO and glass-supported fibers to detail the complexities of apparent contact angle dependence on mat structure related to substrate properties. Electrospinning time and collection distance were controlled parameters for producing thicker and denser mats. In all cases, contact angles increased with collection time for a given substrate series. A morphological wettability study of the fiber mat surface was conducted by applying Rhodamine B dye solution droplets. Using fluorescence microscopy, the stained fibers indicate the extent of true wetting contact and the lack of penetration into the fiber layers. Image comparisons with bright-field illumination confirms that even some fibers of the top layers are not wetted.
采用亲水性和导电性不同的基底对 Titania-聚(聚乙烯吡咯烷酮)(PVP)核壳纳米/微纤维进行静电纺丝,以研究这些基底性质与纤维垫对水的表观接触角之间的关系。本研究的重点是将硅和铝箔基底支撑纤维垫的现有数据与 ITO 和玻璃基底支撑纤维的现有数据进行比较,详细说明与基底性质相关的纤维垫结构对表观接触角的复杂依赖性。静电纺丝时间和收集距离是产生更厚和更密集纤维垫的控制参数。在所有情况下,对于给定的基底系列,接触角随收集时间的增加而增加。采用 Rhodamine B 染料溶液液滴对纤维垫表面进行了润湿性形态学研究。通过荧光显微镜,染色纤维表明真实润湿接触的程度以及缺乏对纤维层的渗透。与明场照明的图像比较证实,即使是顶层的一些纤维也没有被润湿。