Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Infect Immun. 2010 Nov;78(11):4579-88. doi: 10.1128/IAI.00438-10. Epub 2010 Aug 9.
Overwhelming bacteremia is a leading cause of death. To understand the mechanisms involved in protective antibody and pathological inflammatory responses during bacteremia, we have been studying the murine model of Borrelia hermsii infection. Toll-like receptor (TLR) signaling plays an important role in generating the rapid anti-B. hermsii antibody responses required for the resolution of bacteremia. Using NF-κB reporter assays, we found that B. hermsii activates TLR2 and TLR9. However, TLR2(-/-) TLR9(-/-) mice exhibited an impairment in anti-B. hermsii antibody responses similar to that of TLR2(-/-) mice. Moreover, the impairment in the antibody responses of TLR2(-/-) mice or TLR2(-/-) TLR9(-/-) mice coincides with an order-of-magnitude-higher bacteremia, and death results from septic shock, as evidenced by a dysregulated systemic cytokine response and characteristic organ pathology. Since TLR2 appears to be the major extracellular sensor stimulated by B. hermsii, we hypothesized that during elevated bacteremia the activation of intracellular sensors of bacteria triggers dysregulated inflammation in TLR2(-/-) mice. Indeed, blocking the internalization of B. hermsii prevented the induction of inflammatory cytokine responses in TLR2-deficient cells. Furthermore, we found that B. hermsii activates the cytoplasmic sensor nucleotide-binding oligomerization domain 2 (NOD2). Macrophages deficient in both TLR2 and NOD2 have impaired cytokine responses to B. hermsii compared to cells lacking TLR2 alone, and B. hermsii-infected TLR2(-/-) NOD2(-/-) mice exhibited improved survival compared to TLR2(-/-) mice. These data demonstrate that TLR2 is critical for protective immunity and suggest that, during heightened bacteremia, recognition of bacterial components by intracellular sensors can lead to pathological inflammatory responses.
菌血症是导致死亡的主要原因之一。为了了解菌血症期间保护性抗体和病理性炎症反应的相关机制,我们一直在研究伯氏疏螺旋体感染的小鼠模型。Toll 样受体(TLR)信号在产生快速抗伯氏疏螺旋体抗体反应中发挥重要作用,该反应对于清除菌血症至关重要。通过 NF-κB 报告基因检测,我们发现伯氏疏螺旋体激活 TLR2 和 TLR9。然而,TLR2(-/-)TLR9(-/-) 小鼠的抗伯氏疏螺旋体抗体反应缺陷与 TLR2(-/-) 小鼠相似。此外,TLR2(-/-) 小鼠或 TLR2(-/-)TLR9(-/-) 小鼠的抗体反应缺陷伴随着菌血症数量级的增加,败血性休克导致死亡,这可从失调的全身细胞因子反应和特征性器官病理学中得到证实。由于 TLR2 似乎是伯氏疏螺旋体刺激的主要细胞外传感器,我们假设在菌血症升高期间,细菌的细胞内传感器的激活会触发 TLR2(-/-) 小鼠的失调炎症。事实上,阻断伯氏疏螺旋体的内化可防止 TLR2 缺陷细胞中诱导炎症细胞因子反应。此外,我们发现伯氏疏螺旋体激活细胞质传感器核苷酸结合寡聚化结构域 2(NOD2)。与仅缺乏 TLR2 的细胞相比,缺乏 TLR2 和 NOD2 的巨噬细胞对伯氏疏螺旋体的细胞因子反应受损,而感染伯氏疏螺旋体的 TLR2(-/-)NOD2(-/-) 小鼠的存活率优于 TLR2(-/-) 小鼠。这些数据表明 TLR2 对保护性免疫至关重要,并表明在菌血症加剧期间,细胞内传感器对细菌成分的识别可能导致病理性炎症反应。