Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-7227, USA.
Oncogene. 2010 Nov 4;29(44):5895-910. doi: 10.1038/onc.2010.331. Epub 2010 Aug 9.
BCR-ABL1 is a fusion tyrosine kinase, which causes multiple types of leukemia. We used an integrated proteomic approach that includes label-free quantitative protein complex and phosphorylation profiling by mass spectrometry to systematically characterize the proximal signaling network of this oncogenic kinase. The proximal BCR-ABL1 signaling network shows a modular and layered organization with an inner core of three leukemia transformation-relevant adaptor protein complexes (Grb2/Gab2/Shc1 complex, CrkI complex and Dok1/Dok2 complex). We introduced an 'interaction directionality' analysis, which annotates static protein networks with information on the directionality of phosphorylation-dependent interactions. In this analysis, the observed network structure was consistent with a step-wise phosphorylation-dependent assembly of the Grb2/Gab2/Shc1 and the Dok1/Dok2 complexes on the BCR-ABL1 core. The CrkI complex demonstrated a different directionality, which supports a candidate assembly on the Nedd9 (Hef1, CasL) scaffold. As adaptor protein family members can compensate for each other in leukemic transformation, we compared members of the Dok and Crk protein families and found both overlapping and differential binding patterns. We identified an additional level of regulation for the CrkII protein via binding to 14-3-3 proteins, which was independent from its inhibitory phosphorylation. We also identified novel components of the inner core complexes, including the kinases Pragmin (Sgk223) and Lrrk1 (Lrrk2 paralog). Pragmin was found as a component of the CrkI complex and is a potential link between BCR-ABL1/CrkI and RhoA signaling. Lrrk1 is an unusual kinase with a GTPase domain. We detected Lrrk1 as a component of the Grb2/Gab2/Shc1 complex and found that it functionally interacts with the regulator of small GTPases Arap1 (Centd2) and possibly participates in the mitogen-activated protein kinase response to cellular stresses. This modular and phosphorylation-driven interaction network provides a framework for the integration of pleiotropic signaling effects of BCR-ABL1 toward leukemic transformation.
BCR-ABL1 是一种融合酪氨酸激酶,可导致多种类型的白血病。我们使用一种整合的蛋白质组学方法,包括无标签定量蛋白质复合物和通过质谱法进行磷酸化谱分析,系统地表征了这种致癌激酶的近端信号网络。近端 BCR-ABL1 信号网络显示出模块化和分层的组织形式,具有三个与白血病转化相关的衔接蛋白复合物(Grb2/Gab2/Shc1 复合物、CrkI 复合物和 Dok1/Dok2 复合物)的核心。我们引入了一种“相互作用方向性”分析,该分析使用磷酸化依赖性相互作用的方向性信息注释静态蛋白质网络。在这种分析中,观察到的网络结构与 Grb2/Gab2/Shc1 和 Dok1/Dok2 复合物在 BCR-ABL1 核心上逐步磷酸化组装的情况一致。CrkI 复合物表现出不同的方向性,支持在 Nedd9(Hef1、CasL)支架上组装候选物。由于衔接蛋白家族成员在白血病转化中可以相互补偿,我们比较了 Dok 和 Crk 蛋白家族的成员,发现了重叠和不同的结合模式。我们通过与 14-3-3 蛋白结合鉴定了 CrkII 蛋白的另一个调节水平,这与它的抑制性磷酸化无关。我们还鉴定了内核心复合物的新成分,包括激酶 Pragmin(Sgk223)和 Lrrk1(Lrrk2 同源物)。Pragmin 被鉴定为 CrkI 复合物的一个组成部分,是 BCR-ABL1/CrkI 和 RhoA 信号之间的潜在联系。Lrrk1 是一种具有 GTPase 结构域的异常激酶。我们检测到 Lrrk1 是 Grb2/Gab2/Shc1 复合物的一个组成部分,并发现它与小 GTP 酶调节剂 Arap1(Centd2)功能相互作用,可能参与细胞应激的丝裂原激活蛋白激酶反应。这种模块化和磷酸化驱动的相互作用网络为 BCR-ABL1 向白血病转化的多效性信号作用的整合提供了一个框架。