Department of Chemical Physics and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba, Spain.
Bioresour Technol. 2010 Dec;101(24):9587-93. doi: 10.1016/j.biortech.2010.07.076. Epub 2010 Jul 22.
For economic reasons, multi-feedstock plants are preferred to produce biodiesel. However, the optimal conditions of the transesterification reaction depend on the raw material, thus making difficult the achievement of a high yield of biodiesel when different types of feedstock are used under the same operational settings. In the present work, a response surface methodology is proposed to both predict biodiesel yield when different raw materials are used to produce biodiesel and to determine the optimal operational conditions of a multi-feedstock plant. The optimization of the transesterification reaction of five vegetable oils consisting in a wide range of fatty acid profiles has been carried out. Results provided a compromise zone where all the experimental responses satisfied the imposed specifications to achieve the goals, where the best optimal combination of parameters was selected. According to this model, the tested properties of the produced biodiesel are within the limits of the EN 14214 standard. It can be concluded that this methodology provides the most suitable operational conditions to achieve the highest biodiesel yield in a multi-feedstock biodiesel plant, also considering the economics of the process.
出于经济原因,多原料工厂更适合生产生物柴油。然而,酯交换反应的最佳条件取决于原料,因此在相同的操作条件下使用不同类型的原料时,很难获得高生物柴油产率。在本工作中,提出了一种响应面方法,用于预测使用不同原料生产生物柴油时的生物柴油产率,并确定多原料工厂的最佳操作条件。对五种脂肪酸分布范围较宽的植物油的酯交换反应进行了优化。结果提供了一个折衷区域,所有实验响应都满足了实现目标的规定要求,选择了最佳的参数组合。根据该模型,所生产的生物柴油的测试性能在 EN 14214 标准的限制范围内。可以得出结论,该方法提供了最适合的操作条件,以在多原料生物柴油工厂中获得最高的生物柴油产率,同时也考虑了工艺的经济性。