Suppr超能文献

碱铀过氧化物簇的自组装。

Self-assembly of alkali-uranyl-peroxide clusters.

机构信息

Sandia National Laboratories Albuquerque, New Mexico 87185, USA.

出版信息

Inorg Chem. 2010 Sep 6;49(17):7748-55. doi: 10.1021/ic1005192.

Abstract

The hexavalent uranium specie, uranyl triperoxide, UO(2)(O(2))(3)(4-), has been shown recently to behave like high oxidation-state d(0) transition-metals, self-assembling into polyoxometalate-like clusters that contain up to 60 uranyl cations bridged by peroxide ligands. There has been much less focus on synthesis and structural characterization of salts of the monomeric UO(2)(O(2))(3)(4-) building block of these clusters. However, these could serve as water-soluble uranyl precursors for both clusters and materials, and also be used as simple models to study aqueous behavior by experiment and modeling. The countercation is of utmost importance to the assembly of these clusters, and Li(+) has proven useful for the crystallization of many of the known cluster geometries to date. We present in this paper synthesis and structural characterization of two monomeric lithium uranyl-peroxide salts, Li(4)[UO(2)(O(2))(3)] x 10 H(2)O (1) and UO(2)(O(2))(3)(UO(2)(OH)(4))Li(16)(H(2)O)(28) x Li(6)H(2)O (2). They were obtained from aqueous-alcohol solutions rather than the analogous aqueous solutions from which lithium uranyl-peroxide clusters are crystallized. Rapid introduction of the alcohol gives the structure of (1) whereas slow diffusion of alcohol results in crystallization of (2). (2) is an unusual structure featuring uranyl-centered alkali clusters that are linked into ring and spherical arrangements via [UO(2)(O(2))(3)] anions. Furthermore, partial substitution of Rb or Cs into the synthesis results in formation of (2) with substitution of these larger alkalis into the uranyl-centered clusters. We surmise that the slow crystallization allows for direct bonding of alkali metals to the uranyl-peroxide oxygen ligands that is observed in (2), and its Rb and Cs-substituted derivatives. In contrast, the only interaction between UO(2)(O(2))(3)(4-) and Li(+) observed in (1) is through hydrogen bonding of the lithium-bound water. These structures potentially provide some insight to understanding how alkali counterions interact with the UO(2)(O(2))(3)(4-) anions during the self-assembly, crystallization and even redissolution of uranyl-peroxide polyanionic clusters.

摘要

六价铀物种,三过氧化铀酰,UO(2)(O(2))(3)(4-),最近已被证明其行为类似于高氧化态 d(0)过渡金属,自组装成多金属氧酸盐样簇合物,其中包含多达 60 个铀酰阳离子由过氧化物配体桥接。然而,对于这些簇合物的单体 UO(2)(O(2))(3)(4-)建筑块的盐的合成和结构表征关注较少。然而,这些盐既可以作为水溶性铀酰前体用于簇合物和材料,也可以作为研究水溶液行为的简单模型,通过实验和建模来研究。抗衡离子对这些簇合物的组装至关重要,迄今为止,Li(+)已被证明对许多已知簇合物几何形状的结晶有用。在本文中,我们合成并结构表征了两种单体锂铀过氧化物盐,Li(4)[UO(2)(O(2))(3)] x 10 H(2)O (1)和UO(2)(O(2))(3)(UO(2)(OH)(4))Li(16)(H(2)O)(28) x Li(6)H(2)O (2)。它们是从含水-醇溶液中而不是从类似的含水溶液中获得的,其中结晶出锂铀过氧化物簇合物。快速引入醇可得到(1)的结构,而缓慢扩散醇则导致(2)的结晶。(2)是一种不寻常的结构,其特征是铀酰中心的碱金属簇通过[UO(2)(O(2))(3)]阴离子连接成环和球形排列。此外,将 Rb 或 Cs 部分取代到合成中会导致形成(2),并且这些较大的碱金属取代了铀酰中心的簇。我们推测,缓慢的结晶允许碱金属与铀酰过氧化物氧配体直接键合,这在(2)及其 Rb 和 Cs 取代衍生物中观察到。相比之下,在(1)中观察到的 UO(2)(O(2))(3)(4-)与 Li(+)之间的唯一相互作用是通过锂结合水的氢键。这些结构为理解在铀过氧化物多阴离子簇的自组装、结晶甚至重新溶解过程中,碱金属抗衡离子如何与 UO(2)(O(2))(3)(4-)阴离子相互作用提供了一些线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验