Suppr超能文献

减少植物挥发物通讯中的混乱:用森林看树木。

Reducing the babel in plant volatile communication: using the forest to see the trees.

机构信息

Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India.

出版信息

Plant Biol (Stuttg). 2010 Sep 1;12(5):735-42. doi: 10.1111/j.1438-8677.2009.00278.x.

Abstract

While plants of a single species emit a diversity of volatile organic compounds (VOCs) to attract or repel interacting organisms, these specific messages may be lost in the midst of the hundreds of VOCs produced by sympatric plants of different species, many of which may have no signal content. Receivers must be able to reduce the babel or noise in these VOCs in order to correctly identify the message. For chemical ecologists faced with vast amounts of data on volatile signatures of plants in different ecological contexts, it is imperative to employ accurate methods of classifying messages, so that suitable bioassays may then be designed to understand message content. We demonstrate the utility of 'Random Forests' (RF), a machine-learning algorithm, for the task of classifying volatile signatures and choosing the minimum set of volatiles for accurate discrimination, using data from sympatric Ficus species as a case study. We demonstrate the advantages of RF over conventional classification methods such as principal component analysis (PCA), as well as data-mining algorithms such as support vector machines (SVM), diagonal linear discriminant analysis (DLDA) and k-nearest neighbour (KNN) analysis. We show why a tree-building method such as RF, which is increasingly being used by the bioinformatics, food technology and medical community, is particularly advantageous for the study of plant communication using volatiles, dealing, as it must, with abundant noise.

摘要

虽然单一物种的植物会释放多种挥发性有机化合物(VOCs)来吸引或排斥相互作用的生物,但这些特定的信息可能会在同域不同物种的植物产生的数百种 VOC 中丢失,其中许多可能没有信号内容。接收者必须能够减少这些 VOC 中的嘈杂声或噪声,以便正确识别信息。对于面临大量不同生态环境下植物挥发性特征数据的化学生态学家来说,必须采用准确的分类方法来对信息进行分类,以便随后设计合适的生物测定法来理解信息内容。我们使用同域榕属物种的数据作为案例研究,展示了“随机森林”(RF)这一机器学习算法在分类挥发性特征和选择用于准确区分的最小挥发性化合物集方面的应用。我们展示了 RF 相对于传统分类方法(如主成分分析(PCA))以及数据挖掘算法(如支持向量机(SVM)、对角线性判别分析(DLDA)和 K 近邻(KNN)分析)的优势。我们解释了为什么像 RF 这样的树构建方法(它越来越被生物信息学、食品技术和医学界使用)对于使用挥发性物质研究植物通讯特别有利,因为它必须处理大量的噪声。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验