From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
J Biol Chem. 2010 Oct 22;285(43):33209-33218. doi: 10.1074/jbc.M110.113860. Epub 2010 Aug 11.
Apoptosis is driven by positive feedback activation between aspartate-specific cysteinyl proteases (caspases). These feedback loops ensure the swift and efficient elimination of cells upon initiation of apoptosis execution. At the same time, the signaling network must be insensitive to erroneous, mild caspase activation to avoid unwanted, excessive cell death. Sublethal caspase activation in fact was shown to be a requirement for the differentiation of multiple cell types but might also occur accidentally during short, transient cellular stress conditions. Here we carried out an in silico comparison of the molecular mechanisms that so far have been identified to impair the amplification of caspase activities via the caspase-8, -3, -6 loop. In a systems model resembling HeLa cervical cancer cells, the dimerization/dissociation balance of caspase-8 potently suppressed the amplification of caspase responses, surprisingly outperforming or matching known caspase-8 and -3 inhibitors such as bifunctional apoptosis repressor or x-linked inhibitor of apoptosis protein. These findings were further substantiated in global sensitivity analyses based on combinations of protein concentrations from the sub- to superphysiological range to screen the full spectrum of biological variability that can be expected within cell populations and between distinct cell types. Additional modeling showed that the combined effects of x-linked inhibitor of apoptosis protein and caspase-8 dimerization/dissociation processes can also provide resistance to larger inputs of active caspases. Our study therefore highlights a central and so far underappreciated role of caspase-8 dimerization/dissociation in avoiding unwanted cell death by lethal amplification of caspase responses via the caspase-8, -3, -6 loop.
细胞凋亡是由天冬氨酸特异性半胱氨酸蛋白酶(caspase)之间的正反馈激活所驱动的。这些反馈环确保了细胞凋亡执行开始后细胞的快速和有效的消除。同时,信号网络必须对错误的、轻度的半胱氨酸酶激活不敏感,以避免不必要的、过度的细胞死亡。事实上,亚致死性半胱氨酸酶激活被证明是多种细胞类型分化的要求,但也可能在短暂的、短暂的细胞应激条件下偶然发生。在这里,我们进行了一次计算机模拟比较,以确定迄今为止已识别的分子机制,这些机制通过 caspase-8、-3、-6 环来损害 caspase 活性的放大。在类似于 HeLa 宫颈癌细胞的系统模型中,caspase-8 的二聚体/解离平衡有力地抑制了 caspase 反应的放大,令人惊讶的是,其性能优于或与已知的 caspase-8 和 -3 抑制剂(如双功能凋亡抑制剂或 X 连锁凋亡抑制剂蛋白)相匹配。这些发现进一步通过基于从亚生理到超生理范围的蛋白浓度组合的全局敏感性分析得到证实,以筛选出可以预期的细胞群体内和不同细胞类型之间的全谱生物学变异性。额外的建模表明,X 连锁凋亡抑制剂蛋白和 caspase-8 二聚体/解离过程的联合作用也可以提供对更大输入的活性 caspase 的抗性。因此,我们的研究强调了 caspase-8 二聚体/解离在通过 caspase-8、-3、-6 环避免不必要的细胞死亡方面的核心作用,这是迄今为止尚未被充分认识到的作用。