Suppr超能文献

基于现场可编程门阵列的模糊神经信号处理系统,用于嘈杂 ECG 信号中 QRS 复合心动过速和心动过速的鉴别诊断。

Field programmable gate array based fuzzy neural signal processing system for differential diagnosis of QRS complex tachycardia and tachyarrhythmia in noisy ECG signals.

机构信息

Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India.

出版信息

J Med Syst. 2012 Apr;36(2):765-75. doi: 10.1007/s10916-010-9543-7. Epub 2010 Jul 2.

Abstract

The paper reports of a Field Programmable Gate Array (FPGA) based embedded system for detection of QRS complex in a noisy electrocardiogram (ECG) signal and thereafter differential diagnosis of tachycardia and tachyarrhythmia. The QRS complex has been detected after application of entropy measure of fuzziness to build a detection function of ECG signal, which has been previously filtered to remove power line interference and base line wander. Using the detected QRS complexes, differential diagnosis of tachycardia and tachyarrhythmia has been performed. The entire algorithm has been realized in hardware on an FPGA. Using the standard CSE ECG database, the algorithm performed highly effectively. The performance of the algorithm in respect of QRS detection with sensitivity (Se) of 99.74% and accuracy of 99.5% is achieved when tested using single channel ECG with entropy criteria. The performance of the QRS detection system has been compared and found to be better than most of the QRS detection systems available in literature. Using the system, 200 patients have been diagnosed with an accuracy of 98.5%.

摘要

这篇论文报告了一种基于现场可编程门阵列 (FPGA) 的嵌入式系统,用于检测噪声心电信号中的 QRS 复合波,并对心动过速和心动过速进行鉴别诊断。在对心电信号进行模糊熵测量以构建检测函数后,已经检测到了 QRS 复合波,该检测函数已经经过滤波以去除电源线干扰和基线漂移。使用检测到的 QRS 复合波,对心动过速和心动过速进行了鉴别诊断。整个算法已在 FPGA 上的硬件中实现。使用标准 CSE ECG 数据库,该算法表现出了非常高的效率。使用熵标准的单通道 ECG 进行测试时,该算法在 QRS 检测方面的性能达到了 99.74%的灵敏度 (Se) 和 99.5%的准确性。已经对 QRS 检测系统的性能进行了比较,并发现优于文献中大多数可用的 QRS 检测系统。使用该系统,已经对 200 名患者进行了诊断,准确率为 98.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验