Suppr超能文献

增强型模糊聚类算法在乳腺 MRI 增强分割中的应用。

Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.

机构信息

Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.

出版信息

J Med Syst. 2012 Feb;36(1):321-33. doi: 10.1007/s10916-010-9478-z. Epub 2010 Apr 9.

Abstract

Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.

摘要

医学图像分割是一个困难和具有挑战性的问题,由于图像对比度差和伪影导致器官/组织边界缺失或扩散。许多研究人员已经应用了各种技术,但是基于模糊 C 均值(FCM)的算法比其他方法更有效。本工作的目的是开发一些鲁棒的模糊聚类分割系统,以有效地对 DCE-乳腺 MRI 进行分割。本文通过结合核方法、惩罚项、邻域吸引的容限、附加熵项和模糊参数,获得了鲁棒模糊聚类算法。使用初始化算法得到初始中心,以降低所提出算法的计算复杂度和运行时间。对乳腺图像的实验结果表明,所提出的算法可以有效地改善相似性度量,处理大量噪声,对受噪声和其他伪影污染的数据有更好的处理结果。使用轮廓法验证了所提出方法的聚类结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验