Suppr超能文献

基于内源性对比的多参数磁共振分析对皮下小鼠肿瘤进行自动分割

Automatic segmentation of subcutaneous mouse tumors by multiparametric MR analysis based on endogenous contrast.

作者信息

Hectors Stefanie J C G, Jacobs Igor, Strijkers Gustav J, Nicolay Klaas

机构信息

Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands,

出版信息

MAGMA. 2015 Aug;28(4):363-75. doi: 10.1007/s10334-014-0472-1. Epub 2014 Nov 27.

Abstract

OBJECT

Contrast-enhanced T1-weighted imaging is usually included in MRI procedures for automatic tumor segmentation. Use of an MR contrast agent may not be appropriate for some applications, however. We assessed the feasability of automatic tumor segmentation by multiparametric cluster analysis that uses intrinsic MRI contrast only.

MATERIALS AND METHODS

Multiparametric MRI consisting of quantitative T1, T2, and apparent diffusion coefficient (ADC) mapping was performed in mice bearing subcutaneous tumors (n = 21). k-means and fuzzy c-means clustering with all possible combinations of MRI parameters, i.e. feature vectors, and 2-7 clusters were performed on the multiparametric data. Clusters associated with tumor tissue were selected on the basis of the relative signal intensity of tumor tissue in T2-weighted images. The optimum segmentation method was determined by quantitative comparison of automatic segmentation with manual segmentation performed by three observers. In addition, the automatically segmented tumor volumes from seven separate tumor data sets were quantitatively compared with histology-derived tumor volumes.

RESULTS

The highest similarity index between manual and automatic segmentation (SI manual,automatic = 0.82 ± 0.06) was observed for k-means clustering with feature vector {T2, ADC} and four clusters. A strong linear correlation between automatically and manually segmented tumor volumes (R (2) = 0.99) was observed for this segmentation method. Automatically segmented tumor volumes also correlated strongly with histology-derived tumor volumes (R (2) = 0.96).

CONCLUSION

Automatic segmentation of mouse subcutaneous tumors can be achieved on the basis of endogenous MR contrast only.

摘要

目的

对比增强T1加权成像通常包含在用于自动肿瘤分割的MRI程序中。然而,对于某些应用,使用MR造影剂可能并不合适。我们评估了仅使用固有MRI对比的多参数聚类分析进行自动肿瘤分割的可行性。

材料与方法

对患有皮下肿瘤的小鼠(n = 21)进行了由定量T1、T2和表观扩散系数(ADC)映射组成的多参数MRI检查。对多参数数据进行了k均值和模糊c均值聚类,使用MRI参数的所有可能组合,即特征向量,以及2 - 7个聚类。根据T2加权图像中肿瘤组织的相对信号强度选择与肿瘤组织相关的聚类。通过将自动分割与三名观察者进行的手动分割进行定量比较来确定最佳分割方法。此外,对来自七个独立肿瘤数据集的自动分割肿瘤体积与组织学衍生的肿瘤体积进行了定量比较。

结果

对于具有特征向量{T2, ADC}和四个聚类的k均值聚类,观察到手动分割与自动分割之间的最高相似性指数(SI手动,自动 = 0.82 ± 0.06)。对于该分割方法,观察到自动分割和手动分割的肿瘤体积之间存在强线性相关性(R (2) = 0.99)。自动分割的肿瘤体积也与组织学衍生的肿瘤体积密切相关(R (2) = 0.96)。

结论

仅基于内源性MR对比即可实现小鼠皮下肿瘤的自动分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验