Department of Biochemistry and Biophysics, University of California, San Francisco, The Keck Center for Advanced Microscopy, CA 94158-2517, USA.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16016-22. doi: 10.1073/pnas.1004037107. Epub 2010 Aug 12.
Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.
活细胞荧光显微镜具有独特的能力来探测动态过程,将分子组成及其定位与功能联系起来。显微镜的一个关键目标是提高空间和时间分辨率,同时允许识别多个特定的组成部分。我们展示了一种新的显微镜平台 OMX,它能够实现亚秒级、多色四维数据采集,并且还可以访问亚衍射结构照明成像。使用这个平台以每秒一个 3D 图像堆栈的速度在完整的酵母细胞周期中对染色体运动进行成像,揭示了含荧光团的细胞出人意料的感光程度。为了避免对细胞分裂的干扰,激发水平必须衰减到正常成像水平的 1/100 到 1/10,000。我们表明,一种利用图像序列在空间和时间上冗余的图像去噪算法可以从低光水平的噪声图像中恢复生物信息,同时保持细胞的全部活力,没有衰减。