Suppr超能文献

琼脂体中弱散射琼脂球的超声背散射系数。

Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms.

机构信息

Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801, USA.

出版信息

J Acoust Soc Am. 2010 Aug;128(2):903-8. doi: 10.1121/1.3460109.

Abstract

Applicability of ultrasound phantoms to biological tissue has been limited because most phantoms have generally used strong scatterers. The objective was to develop very weakly scattering phantoms, whose acoustic scattering properties are likely closer to those of tissues and then compare theoretical simulations and experimental backscatter coefficient (BSC) results. The phantoms consisted of agar spheres of various diameters (nominally between 90 and 212 microm), containing ultrafiltered milk, suspended in an agar background. BSC estimates were performed at two institutions over the frequency range 1-13 MHz, and compared to three models. Excellent agreement was shown between the two laboratory results as well as with the three models.

摘要

超声仿体在生物组织中的应用受到限制,因为大多数仿体通常使用强散射体。本研究的目的是开发具有极低散射特性的仿体,其声学散射特性可能更接近组织的特性,然后比较理论模拟和实验反向散射系数(BSC)的结果。仿体由含有超滤液的牛奶的琼脂球组成,琼脂球的直径不同(名义上在 90 到 212 微米之间),悬浮在琼脂背景中。在两个机构的频率范围内 1-13 MHz 进行了 BSC 估计,并与三个模型进行了比较。两个实验室的结果以及与三个模型的结果之间都显示出极好的一致性。

相似文献

1
Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms.
J Acoust Soc Am. 2010 Aug;128(2):903-8. doi: 10.1121/1.3460109.
4
Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
Ultrason Imaging. 2010 Jan;32(1):48-64. doi: 10.1177/016173461003200104.
6
On the estimation of backscatter coefficients using single-element focused transducers.
J Acoust Soc Am. 2011 May;129(5):2903-11. doi: 10.1121/1.3557036.
7
The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
Ultrasound Med Biol. 2008 Aug;34(8):1292-306. doi: 10.1016/j.ultrasmedbio.2007.12.017. Epub 2008 Mar 14.
9
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
J Ultrasound Med. 2005 Sep;24(9):1235-50. doi: 10.7863/jum.2005.24.9.1235.
10
Evaluation of ultrasonic scattering in agar-based phantoms using 3D printed scattering molds.
J Ultrasound. 2022 Sep;25(3):597-609. doi: 10.1007/s40477-021-00630-7. Epub 2022 Jan 8.

本文引用的文献

1
Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
Ultrason Imaging. 2010 Jan;32(1):48-64. doi: 10.1177/016173461003200104.
2
The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation.
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):515-25. doi: 10.1109/58.585136.
3
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
J Ultrasound Med. 2005 Sep;24(9):1235-50. doi: 10.7863/jum.2005.24.9.1235.
5
Measurements of ultrasonic backscatter coefficients in human liver and kidney in vivo.
J Acoust Soc Am. 1995 Oct;98(4):1852-7. doi: 10.1121/1.413372.
7
Method of data reduction for accurate determination of acoustic backscatter coefficients.
J Acoust Soc Am. 1984 Sep;76(3):913-23. doi: 10.1121/1.391317.
10
Describing small-scale structure in random media using pulse-echo ultrasound.
J Acoust Soc Am. 1990 Jan;87(1):179-92. doi: 10.1121/1.399283.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验