Suppr超能文献

估计各向同性介质中超声散射体的空间自相关函数。

Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media.

作者信息

Chen J F, Zagzebski J A, Dong F, Madsen E L

机构信息

Department of Medical Physics, University of Wisconsin-Madison 53706, USA.

出版信息

Med Phys. 1998 May;25(5):648-55. doi: 10.1118/1.598247.

Abstract

The autocorrelation function pertaining to spatial distributions of ultrasonic scatterers in soft tissue is believed to contain useful information related to tissue morphology. A simple processing method applied to radio-frequency echo signals estimates this function for a sample having isotropic scattering conditions. It utilizes backscattered echo signals from the sample and echo signals from a reference object having defined scattering properties. The ratio of the echo signal power spectrum from the sample to the echo signal power spectrum from the reference object is obtained, and corrected for attenuation differences between the two media. This yields a "form factor" for the sample, whose inverse Fourier transform is the autocorrelation function. The method was tested using tissue-mimicking samples for which spatial autocorrelation functions could be modeled from the dimensions of embedded scatterers. The shapes of the measured autocorrelation functions were in reasonable agreement with those estimated, although measured functions overestimated the function at small lag distances. Scatterer diameters estimated from the zeros of the autocorrelation function agreed to within 6% of expected values when the measurement system bandwidth satisfied minimal criteria.

摘要

与软组织中超声散射体空间分布相关的自相关函数被认为包含与组织形态相关的有用信息。一种应用于射频回波信号的简单处理方法可针对具有各向同性散射条件的样本估计该函数。它利用来自样本的反向散射回波信号以及来自具有确定散射特性的参考物体的回波信号。获得样本的回波信号功率谱与参考物体的回波信号功率谱之比,并针对两种介质之间的衰减差异进行校正。这就得到了样本的“形状因子”,其傅里叶逆变换即为自相关函数。该方法使用了组织模拟样本进行测试,对于这些样本,可以根据嵌入散射体的尺寸对空间自相关函数进行建模。尽管在小延迟距离处测量的函数高估了自相关函数,但测量的自相关函数形状与估计的形状相当吻合。当测量系统带宽满足最低标准时,从自相关函数的零点估计的散射体直径与预期值的偏差在6%以内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验