Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany.
J Chem Phys. 2010 Aug 14;133(6):064509. doi: 10.1063/1.3469779.
X-ray powder diffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate [(NH(4))(2)SO(4)]. Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.
X 射线粉末衍射是物理学、化学和生物学中结构研究的一项基本技术,现已扩展到原子运动的飞秒时间域。这使得(宏观)分子结构能够通过基本的化学和生物学过程生成,并推导出瞬态电子电荷密度图。在实验中,从多晶粉末中测量了多达 20 个德拜谢乐反射的瞬态强度和角度位置,并以 30 pm 和 100 fs 的组合空间和时间分辨率确定了原子位置和电荷密度图。我们提供了迄今为止未知的协同转移电子和质子的证据,该证据来自于原型材料氢键离子硫酸铵 [(NH(4))(2)SO(4)]。硫酸铵的光激发诱导亚 100 fs 的电子从硫酸盐基团转移到单元晶胞的 c 轴上高度受限的电子通道中。后者的几何形状通过将相邻的铵基团中的质子转移到通道中而稳定下来。从衍射数据得出的时变电荷密度图显示了通道电荷密度的周期性调制,通道和初始质子结合位点之间存在协同的电子和质子运动。我们的结果为广泛的(生物)分子材料的飞秒结构研究奠定了基础。