Department of Chemistry, University of California, Irvine, CA 92697-2025.
Department of Physics and Astronomy, University of California, Irvine, CA 92697-2025.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6538-6547. doi: 10.1073/pnas.1805335115. Epub 2018 Jun 11.
Ultrafast time-resolved X-ray scattering, made possible by free-electron laser sources, provides a wealth of information about electronic and nuclear dynamical processes in molecules. The technique provides stroboscopic snapshots of the time-dependent electronic charge density traditionally used in structure determination and reflects the interplay of elastic and inelastic processes, nonadiabatic dynamics, and electronic populations and coherences. The various contributions to ultrafast off-resonant diffraction from populations and coherences of molecules in crystals, in the gas phase, or from single molecules are surveyed for core-resonant and off-resonant diffraction. Single-molecule [Formula: see text] scaling and two-molecule [Formula: see text] scaling contributions, where N is the number of active molecules, are compared. Simulations are presented for the excited-state nonadiabatic dynamics of the electron harpooning at the avoided crossing in NaF. We show how a class of multiple diffraction signals from a single molecule can reveal charge-density fluctuations through multidimensional correlation functions of the charge density.
超快时间分辨 X 射线散射,得益于自由电子激光源,为分子中的电子和核动力学过程提供了丰富的信息。该技术提供了传统用于结构确定的时变电子密度的频闪快照,并反映了弹性和非弹性过程、非绝热动力学以及电子态和相干态的相互作用。对晶体、气相或单分子中分子的布居和相干超快非共振衍射的各种贡献进行了综述,包括核心共振和非共振衍射。对核心共振和非共振衍射,比较了单分子[公式:见正文]标度和双分子[公式:见正文]标度的贡献,其中 N 是活性分子的数量。为 NaF 中电子诱捕在避免交叉处的激发态非绝热动力学进行了模拟。我们展示了如何通过电荷密度的多维相关函数,从单个分子的一类多衍射信号中揭示电荷密度涨落。