Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
J Exp Biol. 2010 Sep;213(Pt 17):2940-9. doi: 10.1242/jeb.041889.
Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C, suggesting conservation of water during DGE bursts. Overall, this suggests water conservation is a priority for S. spretus exposed to longer-term temperature variation, rather than elevation of SMR in response to low temperature acclimation, as might be expected from a beetle living in a relatively warm, low rainfall summer region. These results are significant for understanding the evolution of gas exchange patterns and trade-offs between metabolic rate and water balance in insects and other terrestrial arthropods.
研究气体交换模式和代谢调节可以深入了解代谢控制系统和不同陆地环境中的进化。代谢率对环境条件的变化的响应主要可以用两种对比假说来解释,即应对压力或资源(如水分)限制条件下的代谢抑制,或在低温下升高代谢以维持极端条件下的生命。为了解析代谢率对温度变化响应的基础,我们进行了一项全面的因子研究,调查了温度暴露对气体交换模式的长期和短期影响。我们研究了气体交换特征(标准代谢率 (SMR);不连续气体交换 (DGE) 循环频率;角质层、呼吸和总水分损失率 (WLR))的响应,以阐明蜣螂 Scarabaeus spretus 中代谢率变化的幅度和形式。结果表明,短期和长期的温度变化通常对 SMR 和 WLR 有显著影响。总体而言,适应较高温度会导致 SMR 下降(从 15°C 适应的甲虫中的 0.071+/-0.004 ml CO(2) h(-1) 下降到 25°C 适应的甲虫在 20°C 测量时的 0.039+/-0.004 ml CO(2) h(-1)),这是由 DGE 频率降低(15°C 适应:0.554+/-0.027 mHz,20°C 适应:0.257+/-0.030 mHz,25°C 适应:0.208+/-0.027 mHz 在 20°C 记录)、角质层 WLR 降低(从 15°C 适应的甲虫中的 1.058+/-0.537 mg h(-1) 降低到 25°C 适应的甲虫中的 0.900+/-0.400 mg h(-1) 在 20°C 测量)和总 WLR 降低(从 15°C 适应的甲虫中的 4.2+/-0.5 mg h(-1) 降低到 25°C 适应的甲虫中的 3.1+/-0.5 mg h(-1) 在 25°C 测量)。在 25°C 测量时,呼吸 WLR 从 15°C 适应的甲虫中的 2.25+/-0.40 mg h(-1) 降低到 1.60+/-0.40 mg h(-1),表明 DGE 爆发期间水分的节约。总体而言,这表明在较长时间的温度变化下,水的节约是 S. spretus 的优先事项,而不是如在相对温暖、低降雨量的夏季地区生活的甲虫那样,为了应对低温适应而升高 SMR。这些结果对于理解昆虫和其他陆地节肢动物的气体交换模式以及代谢率和水平衡之间的权衡关系的进化具有重要意义。