Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, Room 3523, Bethesda, MD 20892, USA.
J Muscle Res Cell Motil. 2010 Sep;31(3):163-70. doi: 10.1007/s10974-010-9220-y. Epub 2010 Aug 14.
Nonmuscle myosin II plays a crucial role in a variety of cellular processes (e.g., polarity formation, cell motility, and cytokinesis). It is composed of two heavy chains, two regulatory light chains and two essential light chains. The ATPase activity of the myosin II motor domain is regulated through phosphorylation of the regulatory light chain (RLC) by myosin light chain kinase. To study myosin function and localization in cellular processes, GFP-fused RLCs are widely used; however, the exact kinetic properties of myosins with bound GFP-RLC are poorly described. More importantly, it has not been shown that a regulatory light chain fused at its N-terminus with GFP can maintain the normal phosphorylation-dependent regulation of nonmuscle myosin or serve as a substrate for myosin light chain kinase. We coexpressed N-terminal GFP-RLC with a heavy meromyosin (HMM)-like fragment of nonmuscle myosin IIA and essential light chain to characterize the phosphorylation dynamics and in vitro kinetic properties of the resulting HMM. Myosin light chain kinase phosphorylates the GFP-RLC bound to HMM IIA with the same V(max) as it does the wild type RLC bound to HMM IIA, but the K(m) is about two fold higher for the GFP fusion protein, meaning that it is a somewhat poorer substrate. The steady-state actin-activated MgATPase activity of the GFP-RLC HMM is very low in the absence of phosphorylation demonstrating that the GFP moiety does not prevent formation of the off state. The actin-activated MgATPase activity of phosphorylated GFP-RLC-HMM and is about half that of wild type phosphorylated HMM. The ability of phosphorylated GFP-RLC-HMM to move actin filaments in the actin gliding assay is also slightly compromised. These data indicate that despite some kinetic differences the N-terminal GFP fusion to the regulatory light chain is a reasonable model system for studying myosin function in vivo.
非肌肉肌球蛋白 II 在多种细胞过程(例如极性形成、细胞运动和胞质分裂)中发挥着关键作用。它由两条重链、两条调节轻链和两条必需轻链组成。肌球蛋白轻链激酶通过调节轻链(RLC)的磷酸化来调节肌球蛋白 II 马达结构域的 ATP 酶活性。为了研究肌球蛋白在细胞过程中的功能和定位,广泛使用 GFP 融合的 RLC;然而,与 GFP 结合的肌球蛋白的精确动力学特性描述得很差。更重要的是,尚未表明与 GFP 在其 N 端融合的调节轻链可以维持非肌肉肌球蛋白的正常磷酸化依赖性调节,或者可以作为肌球蛋白轻链激酶的底物。我们共表达了 N 端 GFP-RLC 与非肌肉肌球蛋白 IIA 的重酶解片段和必需轻链,以表征所得 HMM 的磷酸化动力学和体外动力学特性。肌球蛋白轻链激酶以与结合 HMM IIA 的野生型 RLC 相同的 V(max)磷酸化 GFP-RLC 结合的 HMM,但 GFP 融合蛋白的 K(m)约高两倍,这意味着它是一个较差的底物。在没有磷酸化的情况下,GFP-RLC HMM 的稳态肌动球蛋白激活 MgATP 酶活性非常低,表明 GFP 部分不会阻止关闭状态的形成。磷酸化 GFP-RLC-HMM 的肌动球蛋白激活 MgATP 酶活性约为野生型磷酸化 HMM 的一半。磷酸化 GFP-RLC-HMM 驱动肌动蛋白丝在肌动蛋白滑行测定中的能力也略有受损。这些数据表明,尽管存在一些动力学差异,但调节轻链的 N 端 GFP 融合是研究体内肌球蛋白功能的合理模型系统。