Suppr超能文献

一种用于选择和监测肠胃病监测用药销售的方法。

A method for selecting and monitoring medication sales for surveillance of gastroenteritis.

机构信息

INSERM, U707, Paris 75012, France.

出版信息

Pharmacoepidemiol Drug Saf. 2010 Oct;19(10):1009-18. doi: 10.1002/pds.1965.

Abstract

PURPOSE

Monitoring appropriate categories of medication sales can provide early warning of certain disease outbreaks. This paper presents a methodology for choosing and monitoring medication sales relevant for the surveillance of gastroenteritis and assesses the operational characteristics of the selected medications for early warning.

METHODS

Acute diarrhoea incidences in mainland France were obtained from the Sentinelles network surveillance system for the period 2000-2009. Medication sales grouped by therapeutic classes were obtained on the same period. Hierarchical clustering was used to select therapeutic classes correlating with disease incidence over the period. Alert thresholds were defined for the selected therapeutic classes. Single and multiple voter algorithms were investigated for outbreak detection based on sales crossing the thresholds. Sensitivity and specificity were calculated respective to known outbreaks periods.

RESULTS

Four therapeutic classes were found to cluster with acute diarrhoea incidence. The therapeutic class other antiemetic and antinauseants had the best sensitivity (100%) and timeliness (1.625 weeks before official alerts), for a false alarm rate of 5%. Multiple voter algorithm was the most efficient with the rule: 'Emit an outbreak alert when at least three therapeutic classes are over their threshold' (sensitivity 100%, specificity 95%, timeliness 1.750 weeks before official alerts).

CONCLUSIONS

The presented method allowed selection of relevant therapeutic classes for surveillance of a specific condition. Multiple voter algorithm based on several therapeutic classes performed slightly better than the best therapeutic class alone, while improving robustness against abrupt changes occurring in a single therapeutic class.

摘要

目的

监测适当类别的药物销售情况可以为某些疾病爆发提供预警。本文提出了一种选择和监测与肠胃炎监测相关的药物销售的方法,并评估了所选药物用于预警的操作特征。

方法

2000-2009 年期间,从法国 Sentinelles 网络监测系统获得法国大陆急性腹泻发病率的数据。同期获得按治疗类别分组的药物销售数据。采用层次聚类方法选择与疾病发病率相关的治疗类别。为选定的治疗类别定义了警报阈值。基于销售超过阈值的情况,研究了单一和多重投票算法在爆发检测中的应用。计算了针对已知爆发期的敏感性和特异性。

结果

发现四个治疗类别与急性腹泻发病率聚类。其他止吐药和止恶心药的治疗类别具有最佳的敏感性(100%)和及时性(在官方警报前 1.625 周),假警报率为 5%。多重投票算法是最有效的,规则为:“当至少三个治疗类别超过其阈值时,发出爆发警报”(敏感性 100%,特异性 95%,在官方警报前 1.750 周的及时性)。

结论

所提出的方法允许选择与特定疾病监测相关的相关治疗类别。基于多个治疗类别的多重投票算法的性能略优于最佳治疗类别单独使用,同时提高了对单个治疗类别中突然变化的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验