School of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea.
J Xray Sci Technol. 2010;18(3):221-34. doi: 10.3233/XST-2010-0256.
This paper presents a fast hybrid CPU- and GPU-based CT reconstruction algorithm to reduce the amount of back-projection operation using air skipping involving polygon clipping. The algorithm easily and rapidly selects air areas that have significantly higher contrast in each projection image by applying K-means clustering method on CPU, and then generates boundary tables for verifying valid region using segmented air areas. Based on these boundary tables of each projection image, clipped polygon that indicates active region when back-projection operation is performed on GPU is determined on each volume slice. This polygon clipping process makes it possible to use smaller number of voxels to be back-projected, which leads to a faster GPU-based reconstruction method. This approach has been applied to a clinical data set and Shepp-Logan phantom data sets having various ratio of air region for quantitative and qualitative comparison and analysis of our and conventional GPU-based reconstruction methods. The algorithm has been proved to reduce computational time to half without losing any diagnostic information, compared to conventional GPU-based approaches.
本文提出了一种快速的混合 CPU 和 GPU 基于 CT 重建算法,使用包含多边形裁剪的空气跳过来减少反投影操作的数量。该算法通过在 CPU 上应用 K-均值聚类方法,轻松快速地选择在每个投影图像中具有显著更高对比度的空气区域,然后使用分割的空气区域为每个投影图像生成用于验证有效区域的边界表。基于这些边界表,在每个体素切片上确定在执行 GPU 上的反投影操作时表示活动区域的裁剪多边形。这种多边形裁剪过程使得可以使用更少的体素来进行反投影,从而导致更快的基于 GPU 的重建方法。该方法已经应用于临床数据集和具有不同空气区域比例的 Shepp-Logan 体模数据集,用于对我们和传统的基于 GPU 的重建方法进行定量和定性比较和分析。与传统的基于 GPU 的方法相比,该算法已被证明可以将计算时间减少一半,而不会丢失任何诊断信息。