Suppr超能文献

基于 GPU 的使用空区跳过技术的迭代锥束 CT 重建。

GPU based iterative cone-beam CT reconstruction using empty space skipping technique.

机构信息

The CT laboratory, School of Mathematical Sciences, Capital Normal University, Beijing, China.

出版信息

J Xray Sci Technol. 2013;21(1):53-69. doi: 10.3233/XST-130366.

Abstract

Iterative reconstruction of high-resolution cone-beam CT data is still a difficult task due to the demand for vast amounts of computer cycles and associated memory. In order to improve the performance of iterative algorithms for cone-beam CT reconstruction, an acceleration approach integrating GPU acceleration, empty space skipping and multi-resolution technique is proposed. The approach divides the reconstructed volume into equally sized blocks, and empty blocks are identified by reconstructing an initial low-resolution volume and segmenting it with threshold method. Then all non-empty blocks are packed into a new volume, which is initialized by interpolating the low resolution volume and reconstructed at full resolution using iterative algorithms. Finally these non-empty blocks are rearranged to get the reconstructed high-resolution volume. The whole process is implemented in parallel based on GPU. Since only the voxels in non-empty blocks are calculated, the number of considered voxels is greatly reduced, which translates directly into substantial computation, memory requirements and data transfer savings. The method is evaluated by reconstructing images from simulated projection data of phantom and CT datasets. The results indicate that our approach significantly improves the performance of iterative reconstruction while maintaining a high image quality, compared to conventional GPU-based approaches.

摘要

由于需要大量的计算机周期和相关内存,高分辨率锥形束 CT 数据的迭代重建仍然是一项艰巨的任务。为了提高锥形束 CT 重建的迭代算法的性能,提出了一种集成 GPU 加速、空区跳过和多分辨率技术的加速方法。该方法将重建体积分为大小相等的块,并通过重建初始低分辨率体积并使用阈值方法对其进行分割来识别空块。然后,将所有非空块打包到一个新的体积中,该体积通过插值低分辨率体积并使用迭代算法在全分辨率下重建初始化。最后,这些非空块被重新排列以获得重建的高分辨率体积。整个过程基于 GPU 并行实现。由于仅计算非空块中的体素,因此大大减少了要考虑的体素数量,这直接转化为大量的计算、内存需求和数据传输节省。该方法通过从模拟的体数据集和 CT 数据集的投影数据重建图像进行评估。结果表明,与传统的基于 GPU 的方法相比,我们的方法在保持高质量图像的同时,显著提高了迭代重建的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验