Suppr超能文献

迷走神经对胰腺 β 细胞增殖的控制。

Vagal control of pancreatic ß-cell proliferation.

机构信息

Univ. of Vermont, Colchester, VT 05446, USA.

出版信息

Am J Physiol Endocrinol Metab. 2010 Nov;299(5):E786-93. doi: 10.1152/ajpendo.00202.2010. Epub 2010 Aug 17.

Abstract

The physiological mechanisms that preserve pancreatic β-cell mass (BCM) are not fully understood. Although the regulation of islet function by the autonomic nervous system (ANS) is well established, its potential roles in BCM homeostasis and compensatory growth have not been adequately explored. The parasympathetic vagal branch of the ANS serves to facilitate gastrointestinal function, metabolism, and pancreatic islet regulation of glucose homeostasis, including insulin secretion. Given the functional importance of the vagus nerve and its branches to the liver, gut, and pancreas in control of digestion, motility, feeding behavior, and glucose metabolism, it may also play a role in BCM regulation. We have begun to examine the potential roles of the parasympathetic nervous system in short-term BCM maintenance by performing a selective bilateral celiac branch-vagus nerve transection (CVX) in normal Sprague-Dawley rats. CVX resulted in no detectable effects on basic metabolic parameters or food intake through 1 wk postsurgery. Although there were no differences in BCM or apoptosis in this 1-wk time frame, β-cell proliferation was reduced 50% in the CVX rats, correlating with a marked reduction in activated protein kinase B/Akt. Unexpectedly, acinar proliferation was increased 50% in these rats. These data suggest that the ANS, via the vagus nerve, contributes to the regulation of BCM maintenance at the level of cell proliferation and may also mediate the drive for enhanced growth under physiological conditions when insulin requirements have increased. Furthermore, the disparate effects of CVX on β-cell and acinar cells suggest that the endocrine and exocrine pancreas respond to different neural signals in regard to mass homeostasis.

摘要

目前尚未完全了解维持胰岛β细胞质量(BCM)的生理机制。尽管自主神经系统(ANS)对胰岛功能的调节已得到充分证实,但它在 BCM 稳态和代偿性生长中的潜在作用尚未得到充分探索。ANS 的副交感迷走神经分支有助于促进胃肠道功能、代谢以及胰岛对葡萄糖稳态的调节,包括胰岛素分泌。鉴于迷走神经及其分支对肝脏、肠道和胰腺在控制消化、运动、进食行为和葡萄糖代谢方面的功能重要性,它可能在 BCM 调节中也发挥作用。我们通过对正常 Sprague-Dawley 大鼠进行选择性双侧腹腔分支迷走神经切断术(CVX),开始研究副交感神经系统在短期 BCM 维持中的潜在作用。CVX 手术后 1 周内,对基本代谢参数或食物摄入没有可检测到的影响。尽管在这个 1 周的时间框架内,BCM 或细胞凋亡没有差异,但 CVX 大鼠的β细胞增殖减少了 50%,与激活蛋白激酶 B/Akt 的显著减少相关。出乎意料的是,这些大鼠的腺泡增殖增加了 50%。这些数据表明,ANS 通过迷走神经有助于调节细胞增殖水平的 BCM 维持,并且在胰岛素需求增加时,也可能介导生理条件下增强生长的驱动力。此外,CVX 对β细胞和腺泡细胞的不同影响表明,内分泌和外分泌胰腺对质量稳态的不同神经信号有不同的反应。

相似文献

1
Vagal control of pancreatic ß-cell proliferation.
Am J Physiol Endocrinol Metab. 2010 Nov;299(5):E786-93. doi: 10.1152/ajpendo.00202.2010. Epub 2010 Aug 17.
2
The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1.
Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1479-85. doi: 10.1152/ajpregu.00356.2011. Epub 2011 Aug 17.
3
Visceral nerves: vagal and sympathetic innervation.
JPEN J Parenter Enteral Nutr. 2008 Sep-Oct;32(5):569-71. doi: 10.1177/0148607108321705.
4
Involvement of the parasympathetic nervous system in the initiation of regeneration of pancreatic β-cells.
Endocr J. 2013;60(5):687-96. doi: 10.1507/endocrj.ej12-0361. Epub 2013 Feb 15.
6
Selective Vagotomy Worsens Glucose Control After Ileal Transposition.
Obes Surg. 2018 Aug;28(8):2494-2499. doi: 10.1007/s11695-018-3192-1.
8
Beta-cell function and mass in type 2 diabetes.
Dan Med Bull. 2009 Aug;56(3):153-64.
9
Enhanced beta-cell mass without increased proliferation following chronic mild glucose infusion.
Am J Physiol Endocrinol Metab. 2008 Apr;294(4):E679-87. doi: 10.1152/ajpendo.00569.2007. Epub 2008 Jan 29.

引用本文的文献

3
Vagal sensory neuron-derived FGF3 controls insulin secretion.
Dev Cell. 2025 Jan 6;60(1):51-61.e4. doi: 10.1016/j.devcel.2024.09.016. Epub 2024 Oct 15.
4
Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy.
Pathol Int. 2024 Aug;74(8):438-453. doi: 10.1111/pin.13458. Epub 2024 Jun 18.
5
Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation.
Nat Biomed Eng. 2024 Jul;8(7):808-822. doi: 10.1038/s41551-023-01113-2. Epub 2023 Nov 9.
6
ADGRL1 is a glucose receptor involved in mediating energy and glucose homeostasis.
Diabetologia. 2024 Jan;67(1):170-189. doi: 10.1007/s00125-023-06010-6. Epub 2023 Sep 15.
7
The Vagal Nerve, Inflammation, and Diabetes-A Holy Triangle.
Cells. 2023 Jun 15;12(12):1632. doi: 10.3390/cells12121632.
10
Treatment of Acquired Hypothalamic Obesity: Now and the Future.
Front Endocrinol (Lausanne). 2022 Apr 6;13:846880. doi: 10.3389/fendo.2022.846880. eCollection 2022.

本文引用的文献

1
CNS modulation of pancreatic endocrine function : Multiple modes of expression.
Diabetologia. 1981 Mar;20(Suppl 1):417-425. doi: 10.1007/BF00254511.
2
Expression and function of G-protein-coupled receptors in the male reproductive tract.
An Acad Bras Cienc. 2009 Sep;81(3):321-44. doi: 10.1590/s0001-37652009000300002.
4
Pdk1 activity controls proliferation, survival, and growth of developing pancreatic cells.
Dev Biol. 2009 Oct 1;334(1):285-98. doi: 10.1016/j.ydbio.2009.07.030. Epub 2009 Jul 25.
5
Muscarinic receptor subtypes in the alimentary tract.
J Physiol Pharmacol. 2009 Mar;60(1):3-21.
6
Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7101-6. doi: 10.1073/pnas.0902508106. Epub 2009 Apr 16.
7
mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability.
J Biol Chem. 2009 Mar 20;284(12):7832-42. doi: 10.1074/jbc.M807458200. Epub 2009 Jan 14.
8
Regulation of pancreatic beta cell mass by neuronal signals from the liver.
Science. 2008 Nov 21;322(5905):1250-4. doi: 10.1126/science.1163971.
9
Signals from the neural crest regulate beta-cell mass in the pancreas.
Development. 2008 Jun;135(12):2151-60. doi: 10.1242/dev.015859.
10
Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review.
J Recept Signal Transduct Res. 2008;28(1-2):93-108. doi: 10.1080/10799890801942002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验