Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
Diabetologia. 2024 Jan;67(1):170-189. doi: 10.1007/s00125-023-06010-6. Epub 2023 Sep 15.
AIMS/HYPOTHESIS: The brain is a major consumer of glucose as an energy source and regulates systemic glucose as well as energy balance. Although glucose transporters such as GLUT2 and sodium-glucose cotransporter 2 (SGLT2) are known to regulate glucose homeostasis and metabolism, the identity of a receptor that binds glucose to activate glucose signalling pathways in the brain is unknown. In this study, we aimed to discover a glucose receptor in the mouse hypothalamus.
Here we used a high molecular mass glucose-biotin polymer to enrich glucose-bound mouse hypothalamic neurons through cell-based affinity chromatography. We then subjected the enriched neurons to proteomic analyses and identified adhesion G-protein coupled receptor 1 (ADGRL1) as a top candidate for a glucose receptor. We validated glucose-ADGRL1 interactions using CHO cells stably expressing human ADGRL1 and ligand-receptor binding assays. We generated and determined the phenotype of global Adgrl1-knockout mice and hypothalamus-specific Adgrl1-deficient mice. We measured the variables related to glucose and energy homeostasis in these mice. We also generated an Adgrl1 mouse model to investigate the role of ADGRL1 in sensing glucose using electrophysiology.
Adgrl1 is highly expressed in the ventromedial nucleus of the hypothalamus (VMH) in mice. Lack of Adgrl1 in the VMH in mice caused fasting hyperinsulinaemia, enhanced glucose-stimulated insulin secretion and insulin resistance. In addition, the Adgrl1-deficient mice had impaired feeding responses to glucose and fasting coupled with abnormal glucose sensing and decreased physical activity before development of obesity and hyperglycaemia. In female mice, ovariectomy was necessary to reveal the contribution of ADGRL1 to energy and glucose homeostasis.
CONCLUSIONS/INTERPRETATION: Altogether, our findings demonstrate that ADGRL1 binds glucose and is involved in energy as well as glucose homeostasis in a sex-dependent manner. Targeting ADGRL1 may introduce a new class of drugs for the treatment of type 2 diabetes and obesity.
目的/假设:大脑是葡萄糖作为能量来源的主要消耗者,它调节全身葡萄糖和能量平衡。虽然葡萄糖转运体,如 GLUT2 和钠-葡萄糖协同转运蛋白 2(SGLT2),已知可以调节葡萄糖稳态和代谢,但与葡萄糖结合以激活大脑中葡萄糖信号通路的受体的身份尚不清楚。在这项研究中,我们旨在发现小鼠下丘脑的葡萄糖受体。
在这里,我们使用高分子质量葡萄糖生物素聚合物通过基于细胞的亲和层析来富集结合葡萄糖的小鼠下丘脑神经元。然后,我们对富集的神经元进行蛋白质组学分析,并确定粘附 G 蛋白偶联受体 1(ADGRL1)为葡萄糖受体的首选候选物。我们使用稳定表达人 ADGRL1 的 CHO 细胞和配体-受体结合测定来验证葡萄糖-ADGRL1 相互作用。我们生成并确定了全局 Adgrl1 敲除小鼠和下丘脑特异性 Adgrl1 缺陷小鼠的表型。我们测量了这些小鼠中与葡萄糖和能量稳态相关的变量。我们还生成了 Adgrl1 小鼠模型,以使用电生理学研究 ADGRL1 在葡萄糖感测中的作用。
Adgrl1 在小鼠下丘脑腹内侧核(VMH)中高度表达。在小鼠中,VMH 中缺乏 Adgrl1 导致空腹高胰岛素血症、增强的葡萄糖刺激的胰岛素分泌和胰岛素抵抗。此外,Adgrl1 缺陷小鼠在肥胖和高血糖发生之前,对葡萄糖的摄食反应受损,与禁食相关的葡萄糖感测异常和体力活动减少。在雌性小鼠中,卵巢切除术是揭示 ADGRL1 对能量和葡萄糖稳态贡献所必需的。
结论/解释:总之,我们的研究结果表明,ADGRL1 结合葡萄糖并以性别依赖的方式参与能量和葡萄糖稳态。靶向 ADGRL1 可能为 2 型糖尿病和肥胖症的治疗引入一类新的药物。