Suppr超能文献

朊病毒蛋白(PrP)高度保守的中间区域在 PrP-脂质相互作用中的作用。

Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction.

机构信息

Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Biochemistry. 2010 Sep 21;49(37):8169-76. doi: 10.1021/bi101146v.

Abstract

Converting normal prion protein (PrP(C)) to the pathogenic PrP(Sc) isoform is central to prion disease. We previously showed that, in the presence of lipids, recombinant mouse PrP (rPrP) can be converted into the highly infectious conformation, suggesting a crucial role of lipid-rPrP interaction in PrP conversion. To understand the mechanism of lipid-rPrP interaction, we analyzed the ability of various rPrP mutants to bind anionic lipids and to gain lipid-induced proteinase K (PK) resistance. We found that the N-terminal positively charged region contributes to electrostatic rPrP-lipid binding but does not affect lipid-induced PK resistance. In contrast, the highly conserved middle region of PrP, consisting of a positively charged region and a hydrophobic domain, is essential for lipid-induced rPrP conversion. The hydrophobic domain deletion mutant significantly weakened the hydrophobic rPrP-lipid interaction and abolished the lipid-induced C-terminal PK resistance. The rPrP mutant without positive charges in the middle region reduced the amount of the lipid-induced PK-resistant rPrP form. Consistent with a critical role of the middle region in lipid-induced rPrP conversion, both disease-associated P105L and P102L mutations, localized between lysine residues in the positively charged region, significantly affected lipid-induced rPrP conversion. The hydrophobic domain-localized 129 polymorphism altered the strength of hydrophobic rPrP-lipid interaction. Collectively, our results suggest that the interaction between the middle region of PrP and lipids is essential for the formation of the PK-resistant conformation. Moreover, the influence of disease-associated PrP mutations and the 129 polymorphism on PrP-lipid interaction supports the relevance of PrP-lipid interaction to the pathogenesis of prion disease.

摘要

将正常朊病毒蛋白(PrP(C))转化为致病性 PrP(Sc)异构体是朊病毒病的核心。我们之前曾表明,在存在脂质的情况下,重组小鼠 PrP(rPrP)可以转化为具有高度感染力的构象,这表明脂质-rPrP 相互作用在 PrP 转化中起着至关重要的作用。为了了解脂质-rPrP 相互作用的机制,我们分析了各种 rPrP 突变体结合阴离子脂质和获得脂质诱导的蛋白水解酶(PK)抗性的能力。我们发现,N 端带正电荷的区域有助于静电 rPrP-脂质结合,但不影响脂质诱导的 PK 抗性。相比之下,PrP 的高度保守的中间区域由带正电荷的区域和疏水区组成,对于脂质诱导的 rPrP 转化是必需的。疏水区缺失突变体显著削弱了疏水性 rPrP-脂质相互作用,并消除了脂质诱导的 C 端 PK 抗性。中间区域不带正电荷的 rPrP 突变体减少了脂质诱导的 PK 抗性 rPrP 形式的量。中间区域在脂质诱导的 rPrP 转化中起着关键作用,与疾病相关的 P105L 和 P102L 突变,定位于带正电荷区域的赖氨酸残基之间,显著影响了脂质诱导的 rPrP 转化。定位于疏水区的 129 多态性改变了疏水性 rPrP-脂质相互作用的强度。总之,我们的结果表明,PrP 中间区域与脂质的相互作用对于形成 PK 抗性构象是必不可少的。此外,与疾病相关的 PrP 突变和 129 多态性对 PrP-脂质相互作用的影响支持了 PrP-脂质相互作用与朊病毒病发病机制的相关性。

相似文献

1
Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction.
Biochemistry. 2010 Sep 21;49(37):8169-76. doi: 10.1021/bi101146v.
2
In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc).
J Mol Biol. 2005 Feb 18;346(2):645-59. doi: 10.1016/j.jmb.2004.11.068. Epub 2004 Dec 19.
4
Heparin binding by murine recombinant prion protein leads to transient aggregation and formation of RNA-resistant species.
J Am Chem Soc. 2011 Jan 19;133(2):334-44. doi: 10.1021/ja106725p. Epub 2010 Dec 13.
5
Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
Biochemistry. 2005 May 10;44(18):6776-87. doi: 10.1021/bi050251q.
6
Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions.
Biochemistry. 2007 Jun 12;46(23):7045-53. doi: 10.1021/bi700299h. Epub 2007 May 16.
9
The N-Terminal Polybasic Region of Prion Protein Is Crucial in Prion Pathogenesis Independently of the Octapeptide Repeat Region.
Mol Neurobiol. 2020 Feb;57(2):1203-1216. doi: 10.1007/s12035-019-01804-5. Epub 2019 Nov 9.
10
De novo generation of infectious prions with bacterially expressed recombinant prion protein.
FASEB J. 2013 Dec;27(12):4768-75. doi: 10.1096/fj.13-233965. Epub 2013 Aug 22.

引用本文的文献

1
What is the role of lipids in prion conversion and disease?
Front Mol Neurosci. 2023 Jan 10;15:1032541. doi: 10.3389/fnmol.2022.1032541. eCollection 2022.
2
Cryo-EM of prion strains from the same genotype of host identifies conformational determinants.
PLoS Pathog. 2022 Nov 7;18(11):e1010947. doi: 10.1371/journal.ppat.1010947. eCollection 2022 Nov.
3
Recombinant Mammalian Prions: The "Correctly" Misfolded Prion Protein Conformers.
Viruses. 2022 Aug 31;14(9):1940. doi: 10.3390/v14091940.
4
PrP as a Transducer of Physiological and Pathological Signals.
Front Mol Neurosci. 2021 Nov 22;14:762918. doi: 10.3389/fnmol.2021.762918. eCollection 2021.
5
Membrane composition and lipid to protein ratio modulate amyloid kinetics of yeast prion protein.
RSC Chem Biol. 2021 Feb 5;2(2):592-605. doi: 10.1039/d0cb00203h. eCollection 2021 Apr 1.
6
New and distinct chronic wasting disease strains associated with cervid polymorphism at codon 116 of the Prnp gene.
PLoS Pathog. 2021 Jul 26;17(7):e1009795. doi: 10.1371/journal.ppat.1009795. eCollection 2021 Jul.
7
Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis.
Int J Mol Sci. 2021 Feb 25;22(5):2271. doi: 10.3390/ijms22052271.
8
Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins.
Front Neurosci. 2020 Dec 1;14:611285. doi: 10.3389/fnins.2020.611285. eCollection 2020.
10

本文引用的文献

1
Biochemistry. What makes a prion infectious?
Science. 2010 Feb 26;327(5969):1091-2. doi: 10.1126/science.1187790.
2
Generating a prion with bacterially expressed recombinant prion protein.
Science. 2010 Feb 26;327(5969):1132-5. doi: 10.1126/science.1183748. Epub 2010 Jan 28.
3
Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions.
Annu Rev Biochem. 2009;78:177-204. doi: 10.1146/annurev.biochem.78.082907.145410.
4
Structural changes of membrane-anchored native PrP(C).
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10815-9. doi: 10.1073/pnas.0804721105. Epub 2008 Jul 31.
5
The prion's elusive reason for being.
Annu Rev Neurosci. 2008;31:439-77. doi: 10.1146/annurev.neuro.31.060407.125620.
6
Molecular mechanisms of prion pathogenesis.
Annu Rev Pathol. 2008;3:11-40. doi: 10.1146/annurev.pathmechdis.3.121806.154326.
7
Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18946-51. doi: 10.1073/pnas.0706522104. Epub 2007 Nov 19.
8
A general model of prion strains and their pathogenicity.
Science. 2007 Nov 9;318(5852):930-6. doi: 10.1126/science.1138718.
9
Prion protein and the transmissible spongiform encephalopathies.
Trends Cell Biol. 1997 Feb;7(2):56-62. doi: 10.1016/S0962-8924(96)10054-4.
10
Formation of native prions from minimal components in vitro.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9741-6. doi: 10.1073/pnas.0702662104. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验