Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
Biochemistry. 2010 Sep 21;49(37):8169-76. doi: 10.1021/bi101146v.
Converting normal prion protein (PrP(C)) to the pathogenic PrP(Sc) isoform is central to prion disease. We previously showed that, in the presence of lipids, recombinant mouse PrP (rPrP) can be converted into the highly infectious conformation, suggesting a crucial role of lipid-rPrP interaction in PrP conversion. To understand the mechanism of lipid-rPrP interaction, we analyzed the ability of various rPrP mutants to bind anionic lipids and to gain lipid-induced proteinase K (PK) resistance. We found that the N-terminal positively charged region contributes to electrostatic rPrP-lipid binding but does not affect lipid-induced PK resistance. In contrast, the highly conserved middle region of PrP, consisting of a positively charged region and a hydrophobic domain, is essential for lipid-induced rPrP conversion. The hydrophobic domain deletion mutant significantly weakened the hydrophobic rPrP-lipid interaction and abolished the lipid-induced C-terminal PK resistance. The rPrP mutant without positive charges in the middle region reduced the amount of the lipid-induced PK-resistant rPrP form. Consistent with a critical role of the middle region in lipid-induced rPrP conversion, both disease-associated P105L and P102L mutations, localized between lysine residues in the positively charged region, significantly affected lipid-induced rPrP conversion. The hydrophobic domain-localized 129 polymorphism altered the strength of hydrophobic rPrP-lipid interaction. Collectively, our results suggest that the interaction between the middle region of PrP and lipids is essential for the formation of the PK-resistant conformation. Moreover, the influence of disease-associated PrP mutations and the 129 polymorphism on PrP-lipid interaction supports the relevance of PrP-lipid interaction to the pathogenesis of prion disease.
将正常朊病毒蛋白(PrP(C))转化为致病性 PrP(Sc)异构体是朊病毒病的核心。我们之前曾表明,在存在脂质的情况下,重组小鼠 PrP(rPrP)可以转化为具有高度感染力的构象,这表明脂质-rPrP 相互作用在 PrP 转化中起着至关重要的作用。为了了解脂质-rPrP 相互作用的机制,我们分析了各种 rPrP 突变体结合阴离子脂质和获得脂质诱导的蛋白水解酶(PK)抗性的能力。我们发现,N 端带正电荷的区域有助于静电 rPrP-脂质结合,但不影响脂质诱导的 PK 抗性。相比之下,PrP 的高度保守的中间区域由带正电荷的区域和疏水区组成,对于脂质诱导的 rPrP 转化是必需的。疏水区缺失突变体显著削弱了疏水性 rPrP-脂质相互作用,并消除了脂质诱导的 C 端 PK 抗性。中间区域不带正电荷的 rPrP 突变体减少了脂质诱导的 PK 抗性 rPrP 形式的量。中间区域在脂质诱导的 rPrP 转化中起着关键作用,与疾病相关的 P105L 和 P102L 突变,定位于带正电荷区域的赖氨酸残基之间,显著影响了脂质诱导的 rPrP 转化。定位于疏水区的 129 多态性改变了疏水性 rPrP-脂质相互作用的强度。总之,我们的结果表明,PrP 中间区域与脂质的相互作用对于形成 PK 抗性构象是必不可少的。此外,与疾病相关的 PrP 突变和 129 多态性对 PrP-脂质相互作用的影响支持了 PrP-脂质相互作用与朊病毒病发病机制的相关性。