Ciruela Francisco, Vallano Antoni, Arnau Josep M, Sánchez Silvia, Borroto-Escuela Dasiel O, Agnati Luigi F, Fuxe Kjell, Fernández-Dueñas Víctor
Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, 08907 Barcelona, Spain.
J Recept Signal Transduct Res. 2010 Oct;30(5):322-30. doi: 10.3109/10799893.2010.508166.
Although the G protein-coupled receptor (GPCR) oligomerization has been questioned during the last decade, under some premises the existence of a supramolecular organization of these receptors begins now to be widely accepted by the scientific community. Indeed, GPCR oligomers may enhance the diversity and performance by which extracellular signals are transferred to the G proteins in the process of receptor transduction, although the mechanism that underlie this phenomenon remains still unexplained. Recently, a trans-conformational switching model has been proposed as a mechanism allowing direct inhibition of receptor activation. Thus, heterotropic receptor-receptor allosteric regulations are behind the GPCR oligomeric function. Accordingly, we revise here how GPCR oligomerization impinge in several important receptor functions like biosynthesis, plasma membrane diffusion or velocity, pharmacology and signaling. Overall, the rationale of receptor oligomerization might lie in the cellular need of sensing complex extracellular signals and to translate into a simple computational mode.
尽管在过去十年间,G蛋白偶联受体(GPCR)的寡聚化受到了质疑,但在某些前提下,这些受体超分子组织的存在如今已开始被科学界广泛接受。的确,GPCR寡聚体可能会增强细胞外信号在受体转导过程中传递给G蛋白的多样性和效能,尽管这一现象背后的机制仍未得到解释。最近,一种反式构象转换模型被提出,作为一种直接抑制受体激活的机制。因此,异源受体-受体变构调节是GPCR寡聚体功能的基础。相应地,我们在此回顾GPCR寡聚化如何影响几种重要的受体功能,如生物合成、质膜扩散或速度、药理学和信号传导。总体而言,受体寡聚化的基本原理可能在于细胞感知复杂细胞外信号并转化为简单计算模式的需求。