Suppr超能文献

利用心率变异性自动检测和量化睡眠呼吸暂停。

Automatic detection and quantification of sleep apnea using heart rate variability.

作者信息

Babaeizadeh Saeed, White David P, Pittman Stephen D, Zhou Sophia H

机构信息

Advanced Algorithm Research Center, Philips Healthcare, Andover, MA 01810, USA.

出版信息

J Electrocardiol. 2010 Nov-Dec;43(6):535-41. doi: 10.1016/j.jelectrocard.2010.07.003. Epub 2010 Aug 17.

Abstract

Detection of sleep apnea using electrocardiographic (ECG) parameters is noninvasive and inexpensive. Our approach is based on the hypothesis that the patient's sleep-wake cycle during episodes of sleep apnea modulates heart rate (HR) oscillations. These HR oscillations appear as low-frequency fluctuations of instantaneous HR (IHR) and can be detected using HR variability analysis in the frequency domain. The purpose of this study was to evaluate the efficacy of our ECG-based algorithm for sleep apnea detection and quantification. The algorithm first detects normal QRS complexes and R-R intervals used to derive IHR and to estimate its spectral power in several frequency ranges. A quadratic classifier, trained on the learning set, uses 2 parameters to classify the 1-minute epoch in the middle of each 6-minute window as either apneic or normal. The windows are advanced by 1-minute steps, and the classification process is repeated. As a measure of quantification, the algorithm correctly classified 84.7% of all the 1-minute epochs in the evaluation database; and as a measure of the accuracy of apnea classification, the algorithm correctly classified all 30 test recordings in the evaluation database either as apneic or normal. Our sleep apnea detection algorithm based on analysis of a single-lead ECG provides accurate apnea detection and quantification. Because of its noninvasive and low-cost nature, this algorithm has the potential for numerous applications in sleep medicine.

摘要

利用心电图(ECG)参数检测睡眠呼吸暂停是非侵入性且成本低廉的。我们的方法基于这样的假设:睡眠呼吸暂停发作期间患者的睡眠 - 觉醒周期会调节心率(HR)振荡。这些HR振荡表现为瞬时心率(IHR)的低频波动,可通过频域中的HR变异性分析来检测。本研究的目的是评估我们基于ECG的算法在睡眠呼吸暂停检测和量化方面的功效。该算法首先检测正常的QRS复合波和R - R间期,用于推导IHR并估计其在几个频率范围内的频谱功率。在学习集上训练的二次分类器使用2个参数将每个6分钟窗口中间的1分钟时段分类为呼吸暂停或正常。窗口以1分钟的步长推进,并重复分类过程。作为量化指标,该算法在评估数据库中正确分类了所有1分钟时段的84.7%;作为呼吸暂停分类准确性的指标,该算法在评估数据库中正确地将所有30个测试记录分类为呼吸暂停或正常。我们基于单导联ECG分析的睡眠呼吸暂停检测算法提供了准确的呼吸暂停检测和量化。由于其非侵入性和低成本的特性,该算法在睡眠医学中有众多应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验