Suppr超能文献

突触噪声在持续激活的人类运动神经元中的特性。

Properties of synaptic noise in tonically active human motoneurons.

机构信息

Department of Physiology, The University of Adelaide, Adelaide, Australia.

出版信息

J Electromyogr Kinesiol. 1992;2(4):189-202. doi: 10.1016/1050-6411(92)90023-C.

Abstract

The objective of these experiments was to determine the amount of synaptic noise on the cell membrane at various intervals after an action potential in a motoneuron firing at a specified frequency. Sources of noise such as variations in the level of voluntary drive were minimized by selecting only segments of the spike train in which the unit was running within prescribed frequency limits. The level of the membrane potential of the motoneuron during these intervals was determined using two test "pulses" (compound Ia excitatory postsynaptic potentials) of known amplitude. This enabled the probability of the membrane potential falling within a voltage "window" of known size at known times after the preceding spike to be determined. The probability density histograms showed that the fluctuations of membrane potential about a target interspike trajectory (i.e., the membrane noise) increased with time after the preceding spike. These fluctuations in the membrane potential can be accounted for by a one-dimensional "random walk" model of membrane noise. This model explains the salient features of the interval histograms, such as positive skewness at low target frequencies. A quantitative test of the model demonstrated its applicability to the motor pools of tibialis and masseter.

摘要

这些实验的目的是确定在以特定频率发射动作电位的运动神经元的细胞膜上的突触噪声量,在各种时间间隔之后。通过仅选择单元在规定的频率限制内运行的尖峰序列的片段,最小化了噪声源,例如自愿驱动水平的变化。在这些间隔期间,使用两个测试“脉冲”(复合 Ia 兴奋性突触后电位)来确定运动神经元的膜电位水平,已知幅度。这使得能够确定在前一个尖峰之后的已知时间内,膜电位落在已知大小的电压“窗口”内的概率。概率密度直方图表明,膜电位围绕目标尖峰轨迹的波动(即膜噪声)在前一个尖峰之后随时间增加。这种膜电位的波动可以用膜噪声的一维“随机游走”模型来解释。该模型解释了间隔直方图的显著特征,例如在低目标频率下的正偏度。对模型的定量测试证明了它对胫骨和咬肌运动池的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验