Suppr超能文献

设计一种强效的 D-肽 HIV-1 进入抑制剂,具有很强的抗耐药性。

Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance.

机构信息

Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Rm. 4100, Salt Lake City, UT 84112-5650, USA.

出版信息

J Virol. 2010 Nov;84(21):11235-44. doi: 10.1128/JVI.01339-10. Epub 2010 Aug 18.

Abstract

The HIV gp41 N-trimer pocket region is an ideal viral target because it is extracellular, highly conserved, and essential for viral entry. Here, we report on the design of a pocket-specific D-peptide, PIE12-trimer, that is extraordinarily elusive to resistance and characterize its inhibitory and structural properties. D-peptides (peptides composed of D-amino acids) are promising therapeutic agents due to their insensitivity to protease degradation. PIE12-trimer was designed using structure-guided mirror-image phage display and linker optimization and is the first D-peptide HIV entry inhibitor with the breadth and potency required for clinical use. PIE12-trimer has an ultrahigh affinity for the gp41 pocket, providing it with a reserve of binding energy (resistance capacitor) that yields a dramatically improved resistance profile compared to those of other fusion inhibitors. These results demonstrate that the gp41 pocket is an ideal drug target and establish PIE12-trimer as a leading anti-HIV antiviral candidate.

摘要

HIV gp41 N-三聚体口袋区域是一个理想的病毒靶点,因为它位于细胞外,高度保守,并且对于病毒进入是必需的。在这里,我们报告了一种口袋特异性 D-肽 PIE12-三聚体的设计,它对耐药性非常难以逃避,并对其抑制和结构特性进行了表征。D-肽(由 D-氨基酸组成的肽)由于对蛋白酶降解的不敏感性而成为有前途的治疗剂。PIE12-三聚体是使用结构导向的镜像噬菌体展示和接头优化设计的,是第一个具有临床应用所需广度和效力的 D-肽 HIV 进入抑制剂。PIE12-三聚体对 gp41 口袋具有超高亲和力,为其提供了结合能(耐药电容器)储备,与其他融合抑制剂相比,其耐药性得到了显著改善。这些结果表明,gp41 口袋是一个理想的药物靶点,并确立了 PIE12-三聚体作为一种领先的抗 HIV 抗病毒候选药物。

相似文献

1
Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance.
J Virol. 2010 Nov;84(21):11235-44. doi: 10.1128/JVI.01339-10. Epub 2010 Aug 18.
2
Characterization of resistance to a potent D-peptide HIV entry inhibitor.
Retrovirology. 2019 Oct 22;16(1):28. doi: 10.1186/s12977-019-0489-7.
3
Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry.
Bioconjug Chem. 2012 Jun 20;23(6):1252-8. doi: 10.1021/bc300076f. Epub 2012 May 17.
4
Mechanism of HIV-1 Resistance to Short-Peptide Fusion Inhibitors Targeting the Gp41 Pocket.
J Virol. 2015 Jun;89(11):5801-11. doi: 10.1128/JVI.00373-15. Epub 2015 Mar 18.
5
Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket.
J Virol. 2015 Dec;89(24):12467-79. doi: 10.1128/JVI.01741-15. Epub 2015 Oct 7.
6
Design of a highly potent HIV-1 fusion inhibitor targeting the gp41 pocket.
AIDS. 2015 Jan 2;29(1):13-21. doi: 10.1097/QAD.0000000000000498.
7
Interactions of HIV-1 inhibitory peptide T20 with the gp41 N-HR coiled coil.
J Biol Chem. 2009 Feb 6;284(6):3619-27. doi: 10.1074/jbc.M809269200. Epub 2008 Dec 10.
9
The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance.
J Antimicrob Chemother. 2014 Oct;69(10):2759-69. doi: 10.1093/jac/dku183. Epub 2014 Jun 7.

引用本文的文献

1
Innovative Peptide Therapeutics in the Pipeline: Transforming Cancer Detection and Treatment.
Int J Mol Sci. 2025 Jul 16;26(14):6815. doi: 10.3390/ijms26146815.
2
Utilizing Machine Learning to Improve Neutralization Potency of an HIV-1 Antibody Targeting the gp41 N-Heptad Repeat.
ACS Chem Biol. 2025 Jul 18;20(7):1470-1480. doi: 10.1021/acschembio.5c00035. Epub 2025 Jun 20.
3
Generating a mirror-image monobody targeting MCP-1 via TRAP display and chemical protein synthesis.
Nat Commun. 2024 Dec 23;15(1):10723. doi: 10.1038/s41467-024-54902-x.
4
Electron tomography visualization of HIV-1 virions trapped by fusion inhibitors to host cells in infected tissues.
J Virol. 2024 Nov 19;98(11):e0143224. doi: 10.1128/jvi.01432-24. Epub 2024 Oct 30.
5
The Role of Peptides in Combatting HIV Infection: Applications and Insights.
Molecules. 2024 Oct 19;29(20):4951. doi: 10.3390/molecules29204951.
6
BracketMaker: Visualization and optimization of chemical protein synthesis.
Protein Sci. 2024 Oct;33(10):e5174. doi: 10.1002/pro.5174.
7
Structure and Interactions of HIV-1 gp41 CHR-NHR Reverse Hairpin Constructs Reveal Molecular Determinants of Antiviral Activity.
J Mol Biol. 2024 Aug 15;436(16):168650. doi: 10.1016/j.jmb.2024.168650. Epub 2024 Jun 10.
9
Strategies to improve the physicochemical properties of peptide-based drugs.
Pharm Res. 2023 Mar;40(3):617-632. doi: 10.1007/s11095-023-03486-0. Epub 2023 Mar 3.
10
HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2215792120. doi: 10.1073/pnas.2215792120. Epub 2023 Feb 16.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding.
PLoS Pathog. 2009 Nov;5(11):e1000674. doi: 10.1371/journal.ppat.1000674. Epub 2009 Nov 26.
4
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
5
Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection.
N Engl J Med. 2008 Jul 24;359(4):355-65. doi: 10.1056/NEJMoa0708978.
6
Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants.
Antiviral Res. 2008 Nov;80(2):213-22. doi: 10.1016/j.antiviral.2008.06.012. Epub 2008 Jul 14.
7
Selection of T1249-resistant human immunodeficiency virus type 1 variants.
J Virol. 2008 Jul;82(13):6678-88. doi: 10.1128/JVI.00352-08. Epub 2008 Apr 23.
8
Potent D-peptide inhibitors of HIV-1 entry.
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16828-33. doi: 10.1073/pnas.0708109104. Epub 2007 Oct 17.
9
Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12772-7. doi: 10.1073/pnas.0701478104. Epub 2007 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验