Eggink Dirk, Baldwin Christopher E, Deng Yiqun, Langedijk Johannes P M, Lu Min, Sanders Rogier W, Berkhout Ben
Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
J Virol. 2008 Jul;82(13):6678-88. doi: 10.1128/JVI.00352-08. Epub 2008 Apr 23.
Human immunodeficiency virus type 1 (HIV-1) entry is an attractive target for therapeutic intervention. Two drugs that inhibit this process have been approved: the fusion inhibitor T20 (enfuvirtide [Fuzeon]) and, more recently, the CCR5 blocker maraviroc (Selzentry). T1249 is a second-generation fusion inhibitor with improved antiviral potency compared to the first-generation peptide T20. We selected T1249-resistant HIV-1 variants in vitro by serial virus passage in the presence of increasing T1249 doses after passage with wild-type and T20-resistant variants. Sequence analysis revealed the acquisition of substitutions within the HR1 region of the gp41 ectodomain. The virus acquired mutations of residue V38 to either E or R in 10 of 19 cultures. Both E and R at position 38 were confirmed to cause resistance to T1249, as well as cross-resistance to T20 and C34, but not to the third-generation fusion inhibitor T2635. We also observed substitutions at residues 79 and 90 (Q79E and K90E), which provide modest resistance to T1249 and, interestingly, T2635. Thus, the gp41 amino acid position implicated in T20 resistance (V38 replaced by A, G, or W) is also responsible for T1249 resistance (V38 replaced by E, R, or K). These results indicate that T20 and T1249 exhibit very similar inhibition modes that call for similar but not identical resistance mutations. All T1249-resistant viruses with changes at position 38 are cross resistant to T20, but not vice versa. Furthermore, substitutions at position 38 do not provide resistance to the third-generation inhibitor T2635, while substitution at positions 79 and 90 do, suggesting different resistance mechanisms.
1型人类免疫缺陷病毒(HIV-1)进入细胞过程是治疗干预的一个有吸引力的靶点。两种抑制该过程的药物已获批准:融合抑制剂T20(恩夫韦肽[福泽昂]),以及最近的CCR5阻断剂马拉维罗(赛瑞特)。与第一代肽T20相比,T1249是一种具有更高抗病毒效力的第二代融合抑制剂。我们通过在野生型和T20耐药变异株传代后,在不断增加的T1249剂量存在的情况下进行连续病毒传代,在体外筛选出T1249耐药的HIV-1变异株。序列分析显示在gp41胞外域的HR1区域内获得了替换。在19个培养物中的10个中,病毒在第38位残基处发生了从V到E或R的突变。第38位的E和R均被证实会导致对T1249的耐药,以及对T20和C34的交叉耐药,但对第三代融合抑制剂T2635没有耐药。我们还观察到第79和90位残基处的替换(Q79E和K90E),它们对T1249以及有趣的是对T2635提供了适度的耐药。因此,与T20耐药相关的gp41氨基酸位置(V38被A、G或W取代)也导致了T1249耐药(V38被E、R或K取代)。这些结果表明,T20和T1249表现出非常相似的抑制模式,需要相似但不完全相同的耐药突变。所有在第38位发生变化的T1249耐药病毒对T20都有交叉耐药,但反之则不然。此外,第38位的替换不会导致对第三代抑制剂T2635的耐药,而第79和90位的替换则会导致耐药,这表明存在不同的耐药机制。