Suppr超能文献

T1249耐药的1型人类免疫缺陷病毒变体的选择

Selection of T1249-resistant human immunodeficiency virus type 1 variants.

作者信息

Eggink Dirk, Baldwin Christopher E, Deng Yiqun, Langedijk Johannes P M, Lu Min, Sanders Rogier W, Berkhout Ben

机构信息

Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.

出版信息

J Virol. 2008 Jul;82(13):6678-88. doi: 10.1128/JVI.00352-08. Epub 2008 Apr 23.

Abstract

Human immunodeficiency virus type 1 (HIV-1) entry is an attractive target for therapeutic intervention. Two drugs that inhibit this process have been approved: the fusion inhibitor T20 (enfuvirtide [Fuzeon]) and, more recently, the CCR5 blocker maraviroc (Selzentry). T1249 is a second-generation fusion inhibitor with improved antiviral potency compared to the first-generation peptide T20. We selected T1249-resistant HIV-1 variants in vitro by serial virus passage in the presence of increasing T1249 doses after passage with wild-type and T20-resistant variants. Sequence analysis revealed the acquisition of substitutions within the HR1 region of the gp41 ectodomain. The virus acquired mutations of residue V38 to either E or R in 10 of 19 cultures. Both E and R at position 38 were confirmed to cause resistance to T1249, as well as cross-resistance to T20 and C34, but not to the third-generation fusion inhibitor T2635. We also observed substitutions at residues 79 and 90 (Q79E and K90E), which provide modest resistance to T1249 and, interestingly, T2635. Thus, the gp41 amino acid position implicated in T20 resistance (V38 replaced by A, G, or W) is also responsible for T1249 resistance (V38 replaced by E, R, or K). These results indicate that T20 and T1249 exhibit very similar inhibition modes that call for similar but not identical resistance mutations. All T1249-resistant viruses with changes at position 38 are cross resistant to T20, but not vice versa. Furthermore, substitutions at position 38 do not provide resistance to the third-generation inhibitor T2635, while substitution at positions 79 and 90 do, suggesting different resistance mechanisms.

摘要

1型人类免疫缺陷病毒(HIV-1)进入细胞过程是治疗干预的一个有吸引力的靶点。两种抑制该过程的药物已获批准:融合抑制剂T20(恩夫韦肽[福泽昂]),以及最近的CCR5阻断剂马拉维罗(赛瑞特)。与第一代肽T20相比,T1249是一种具有更高抗病毒效力的第二代融合抑制剂。我们通过在野生型和T20耐药变异株传代后,在不断增加的T1249剂量存在的情况下进行连续病毒传代,在体外筛选出T1249耐药的HIV-1变异株。序列分析显示在gp41胞外域的HR1区域内获得了替换。在19个培养物中的10个中,病毒在第38位残基处发生了从V到E或R的突变。第38位的E和R均被证实会导致对T1249的耐药,以及对T20和C34的交叉耐药,但对第三代融合抑制剂T2635没有耐药。我们还观察到第79和90位残基处的替换(Q79E和K90E),它们对T1249以及有趣的是对T2635提供了适度的耐药。因此,与T20耐药相关的gp41氨基酸位置(V38被A、G或W取代)也导致了T1249耐药(V38被E、R或K取代)。这些结果表明,T20和T1249表现出非常相似的抑制模式,需要相似但不完全相同的耐药突变。所有在第38位发生变化的T1249耐药病毒对T20都有交叉耐药,但反之则不然。此外,第38位的替换不会导致对第三代抑制剂T2635的耐药,而第79和90位的替换则会导致耐药,这表明存在不同的耐药机制。

相似文献

1
Selection of T1249-resistant human immunodeficiency virus type 1 variants.
J Virol. 2008 Jul;82(13):6678-88. doi: 10.1128/JVI.00352-08. Epub 2008 Apr 23.
3
Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors.
J Biol Chem. 2009 Sep 25;284(39):26941-50. doi: 10.1074/jbc.M109.004416. Epub 2009 Jul 17.
4
Interactions of HIV-1 inhibitory peptide T20 with the gp41 N-HR coiled coil.
J Biol Chem. 2009 Feb 6;284(6):3619-27. doi: 10.1074/jbc.M809269200. Epub 2008 Dec 10.
10
Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16332-7. doi: 10.1073/pnas.0807335105. Epub 2008 Oct 13.

引用本文的文献

1
Convergent HIV-1 Evolution upon Targeted Destabilization of the gp120-gp41 Interface.
J Virol. 2021 Nov 23;95(24):e0053221. doi: 10.1128/JVI.00532-21. Epub 2021 Sep 29.
5
Characterization of resistance to a potent D-peptide HIV entry inhibitor.
Retrovirology. 2019 Oct 22;16(1):28. doi: 10.1186/s12977-019-0489-7.
7
Optimization of peptidic HIV-1 fusion inhibitor T20 by phage display.
Protein Sci. 2019 Aug;28(8):1501-1512. doi: 10.1002/pro.3669.
8
HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry.
J Biol Chem. 2019 Apr 12;294(15):5736-5746. doi: 10.1074/jbc.RA119.007360. Epub 2019 Jan 29.
9
Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial-approved membrane fusion inhibitor.
J Biol Chem. 2018 Aug 17;293(33):12703-12718. doi: 10.1074/jbc.RA118.003538. Epub 2018 Jun 21.
10
Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket.
Front Cell Infect Microbiol. 2018 Feb 26;8:51. doi: 10.3389/fcimb.2018.00051. eCollection 2018.

本文引用的文献

1
Mechanistic studies of a T20-dependent human immunodeficiency virus type 1 variant.
J Virol. 2008 Aug;82(15):7735-40. doi: 10.1128/JVI.02524-07. Epub 2008 May 14.
2
Evolution of genotypic and phenotypic resistance during chronic treatment with the fusion inhibitor T-1249.
AIDS Res Hum Retroviruses. 2007 Nov;23(11):1366-73. doi: 10.1089/aid.2006.0277.
3
HIV-1 drug-resistance and drug-dependence.
Retrovirology. 2007 Oct 25;4:78. doi: 10.1186/1742-4690-4-78.
4
Virological fitness of HIV in patients with resistance to enfuvirtide.
AIDS. 2007 Sep 12;21(14):1974-7. doi: 10.1097/QAD.0b013e3282ef1bc8.
5
Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12772-7. doi: 10.1073/pnas.0701478104. Epub 2007 Jul 19.
10
Development of HIV fusion inhibitors.
J Pept Sci. 2005 Nov;11(11):744-53. doi: 10.1002/psc.703.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验