Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Am J Physiol Cell Physiol. 2010 Nov;299(5):C1203-11. doi: 10.1152/ajpcell.00149.2010. Epub 2010 Aug 18.
We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart.
我们发现磷酸烯醇式丙酮酸水合酶(PLM)与心脏 L 型钙通道(Wang 等人,Biophys J 98:1149-1159,2010)相互作用并调节其门控。PLM 的短 17 个氨基酸胞外 NH2-末端结构域包含一个高度保守的 PFTYD 序列,该序列将其定义为离子转运调节剂 FXYD 家族的成员。尽管我们已经了解了很多关于 PLM 依赖性钙通道门控变化的知识,但对于观察到的变化背后的分子机制却知之甚少。因此,我们研究了 PFTYD 片段在心脏钙通道调制中的作用,方法是分别用丙氨酸(P8A、F9A、T10A、Y11A、D12A)取代 Pro-8、Phe-9、Thr-10、Tyr-11 和 Asp-12。此外,Asp-12 被替换为赖氨酸(D12K)和半胱氨酸(D12C)。正如预期的那样,野生型 PLM 显著减缓通道激活和失活,并增强电压依赖性失活(VDI)。我们惊讶地发现,Thr-10 和 Asp-12 处的氨基酸取代显著增强了 PLM 调节 Ca(V)1.2 门控的能力。T10A 使 PLM 诱导的激活减速增加了两倍,而 D12K 和 D12C 则极大地增强了 PLM 诱导的 VDI 增加。PLM 诱导的通道关闭减慢被 D12A 和 D12C 消除,而 D12K 和 T10A 未能影响此效果。这些研究表明,PFXYD 基序对于 PLM 与 Ca(V)1.2 的结合不是必需的。相反,由于改变 PFXYD 片段的化学和/或物理性质改变了 PLM 对 Ca(V)1.2 通道门控的相反作用的相对幅度,PLM 似乎在精细调节心脏钙通道的门控动力学方面发挥着重要作用,并且可能在塑造心脏动作电位和调节心脏中的 Ca(2+)动力学方面发挥着重要作用。