Mahlab U, Shamir J
Appl Opt. 1992 Mar 10;31(8):1117-25. doi: 10.1364/AO.31.001117.
A general approach to the implementation of highly selective spatial filters for pattern recognition leads to a nonlinear optimization problem. Three optimization algorithms, hill climbing (direct search), simulated annealing, and the genetic algorithm, were investigated for implementation on hybrid electro-optical systems. Experimental results indicate the substantial superiority of the genetic algorithm in terms of operating speed and performance quality.
用于模式识别的高选择性空间滤波器实现的一般方法会导致一个非线性优化问题。研究了三种优化算法,即爬山法(直接搜索)、模拟退火算法和遗传算法,以便在混合电光系统上实现。实验结果表明,遗传算法在运行速度和性能质量方面具有显著优势。