Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan.
FEMS Microbiol Lett. 2010 Oct;311(1):56-60. doi: 10.1111/j.1574-6968.2010.02068.x. Epub 2010 Aug 16.
Seven plasmid-mediated 16S rRNA methyltransferases (MTases), RmtA, RmtB, RmtC, RmtD, RmtE, ArmA, and NpmA, conferring aminoglycoside resistance have so far been found in Gram-negative pathogenic microorganisms. In the present study, by performing an RNase protection assay, primer extension, and HPLC, we confirmed that RmtC indeed methylates at the N7 position of nucleotide G1405 in 16S rRNA as found in ArmA and RmtB. RmtC has an MTase activity specific for the bacterial 30S ribosomal subunit consisting of 16S rRNA and several ribosomal proteins, but not for the naked 16S rRNA, as seen in ArmA, RmtB, and NpmA. All seven 16S rRNA MTases have been found exclusively in Gram-negative bacilli to date, and no plasmid-mediated 16S rRNA MTase has been reported in Gram-positive pathogenic microorganisms. Thus, we checked whether or not the RmtC could function in Gram-positive bacilli, and found that RmtC could indeed confer high-level resistance to gentamicin and kanamycin in Bacillus subtilis and Staphylococcus aureus. 16S rRNA MTases seemed to be functional to some extent in any bacterial species, regardless of the provenance of the 16S rRNA MTase gene responsible for aminoglycoside resistance.
目前已在革兰氏阴性致病菌中发现了 7 种可转移 16S rRNA 甲基转移酶(MTases),即 RmtA、RmtB、RmtC、RmtD、RmtE、ArmA 和 NpmA,它们可赋予氨基糖苷类抗生素抗性。在本研究中,通过进行 RNase 保护实验、引物延伸和 HPLC 分析,我们证实 RmtC 确实能够使 ArmA 和 RmtB 中发现的 16S rRNA 上的核苷酸 G1405 的 N7 位甲基化。RmtC 具有针对由 16S rRNA 和几个核糖体蛋白组成的细菌 30S 核糖体亚基的 MTase 活性,而不像 ArmA、RmtB 和 NpmA 那样仅针对裸露的 16S rRNA。迄今为止,所有 7 种 16S rRNA MTase 仅在革兰氏阴性杆菌中发现,而在革兰氏阳性致病菌中尚未报道有可转移的 16S rRNA MTase。因此,我们检查了 RmtC 是否可以在革兰氏阳性杆菌中发挥作用,结果发现 RmtC 确实可以使枯草芽孢杆菌和金黄色葡萄球菌对庆大霉素和卡那霉素产生高水平的抗性。16S rRNA MTase 在某种程度上似乎对任何细菌物种都具有功能,而与负责氨基糖苷类抗生素抗性的 16S rRNA MTase 基因的来源无关。