Suppr超能文献

组织对膈起始淋巴管力学特性的贡献。

Tissue contribution to the mechanical features of diaphragmatic initial lymphatics.

机构信息

Department of Experimental and Clinical Biomedical Sciences, Università degli Studi dell’Insubria, 21100 Varese, Italy.

出版信息

J Physiol. 2010 Oct 15;588(Pt 20):3957-69. doi: 10.1113/jphysiol.2010.196204.

Abstract

The role of the mechanical properties of the initial lymphatic wall and of the surrounding tissue in supporting lymph formation and/or progression was studied in six anaesthetized, neuromuscularly blocked and mechanically ventilated rats. After mid-sternal thoracotomy, submesothelial initial lymphatics were identified on the pleural diaphragmatic surface through stereomicroscopy. An 'in vivo' lymphatic segment was prepared by securing two surgical threads around the vessel at a distance of ∼2.5 mm leaving the vessel in place. Two glass micropipettes were inserted into the lumen, one for intraluminar injections of 4.6 nl saline boluses and one for hydraulic pressure (Plymph) recording. The compliance of the vessel wall (Clymph) was calculated as the slope of the plot describing the change in segment volume as a function of the post-injection Plymph changes. Two superficial lymphatic vessel populations with a significantly different Clymph (6.7 ± 1.6 and 1.5 ± 0.4 nl mmHg−1 (mean ± S.E.M.), P < 0.001) were identified. In seven additional rats, the average elastic modulus of diaphragmatic tissue strips was determined by uniaxial tension tests to be 1.7 ± 0.3 MPa. Clymph calculated for an initial lymphatic completely surrounded by isotropic tissue was 0.068 nl mmHg−1, i.e. two orders of magnitude lower than in submesothelial lymphatics. Modelling of stress distribution in the lymphatic wall suggests that compliant vessels may act as reservoirs accommodating large absorbed fluid volumes, while lymphatics with stiffer walls serve to propel fluid through the lumen of the lymphatic vessel by taking advantage of the more efficient mechanical transmission of tissue stresses to the lymphatic lumen.

摘要

在六只麻醉、神经肌肉阻滞和机械通气的大鼠中,研究了初始淋巴管壁和周围组织的机械性能在支持淋巴形成和/或进展中的作用。开胸后,通过体视显微镜在胸膜膈面识别出亚内皮初始淋巴管。通过在距离血管约 2.5 毫米处用两根手术线将一段“活体”淋巴管固定在血管周围,制备一段“活体”淋巴管。将两个玻璃微管插入管腔,一个用于腔内注射 4.6 nl 盐水丸,另一个用于液压(Plymph)记录。血管壁顺应性(Clymph)的计算方法是,将描述随注射后 Plymph 变化而变化的血管段体积的图的斜率。发现两种具有显著不同 Clymph 的浅表淋巴管群体(6.7 ± 1.6 和 1.5 ± 0.4 nl mmHg−1(平均值 ± S.E.M.),P < 0.001)。在另外七只大鼠中,通过单轴张力试验确定了膈肌组织条带的平均弹性模量为 1.7 ± 0.3 MPa。完全被各向同性组织包围的初始淋巴管的 Clymph 计算值为 0.068 nl mmHg−1,即比亚内皮淋巴管低两个数量级。对淋巴管壁中应力分布的建模表明,顺应性血管可作为容纳大量吸收液体体积的储液器,而具有更硬壁的淋巴管则通过利用组织应力向淋巴管腔的更有效的机械传递来推动液体通过淋巴管腔,从而发挥作用。

相似文献

1
Tissue contribution to the mechanical features of diaphragmatic initial lymphatics.
J Physiol. 2010 Oct 15;588(Pt 20):3957-69. doi: 10.1113/jphysiol.2010.196204.
2
Lymphatic anatomy and biomechanics.
J Physiol. 2011 Jun 15;589(Pt 12):2927-34. doi: 10.1113/jphysiol.2011.206672. Epub 2011 Apr 11.
3
Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.
Am J Physiol Heart Circ Physiol. 2015 Feb 1;308(3):H193-205. doi: 10.1152/ajpheart.00701.2014. Epub 2014 Dec 5.
4
Kinetics of fluid flux in the rat diaphragmatic submesothelial lymphatic lacunae.
Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1182-H1190. doi: 10.1152/ajpheart.00369.2008. Epub 2008 Jul 18.
5
Functional arrangement of rat diaphragmatic initial lymphatic network.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H876-85. doi: 10.1152/ajpheart.01276.2005. Epub 2006 Feb 17.
6
Regional recruitment of rat diaphragmatic lymphatics in response to increased pleural or peritoneal fluid load.
J Physiol. 2007 Mar 15;579(Pt 3):835-47. doi: 10.1113/jphysiol.2006.127126. Epub 2007 Jan 11.
7
Temperature-dependent modulation of regional lymphatic contraction frequency and flow.
Am J Physiol Heart Circ Physiol. 2017 Nov 1;313(5):H879-H889. doi: 10.1152/ajpheart.00267.2017. Epub 2017 Aug 4.
8
Subatmospheric pressure in the rabbit pleural lymphatic network.
J Physiol. 1999 Nov 1;520 Pt 3(Pt 3):761-9. doi: 10.1111/j.1469-7793.1999.00761.x.
9
Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm.
Microvasc Res. 2023 Jan;145:104438. doi: 10.1016/j.mvr.2022.104438. Epub 2022 Sep 16.
10
Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation.
Am J Physiol Heart Circ Physiol. 2005 Jul;289(1):H263-9. doi: 10.1152/ajpheart.00060.2005. Epub 2005 Apr 15.

引用本文的文献

1
Effect of valve spacing on peristaltic pumping.
Bioinspir Biomim. 2023 Mar 9;18(3):035002. doi: 10.1088/1748-3190/acbe85.
2
Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics.
Biology (Basel). 2022 Dec 12;11(12):1803. doi: 10.3390/biology11121803.
3
Dermal Lymphatic Capillaries Do Not Obey Murray's Law.
Front Cardiovasc Med. 2022 Apr 12;9:840305. doi: 10.3389/fcvm.2022.840305. eCollection 2022.
4
Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task.
Biology (Basel). 2022 Mar 10;11(3):419. doi: 10.3390/biology11030419.
5
Lymphatic Vessel Network Structure and Physiology.
Compr Physiol. 2018 Dec 13;9(1):207-299. doi: 10.1002/cphy.c180015.
6
Lymphatic System Flows.
Annu Rev Fluid Mech. 2018 Jan;50:459-482. doi: 10.1146/annurev-fluid-122316-045259.
7
Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels.
Front Bioeng Biotechnol. 2018 Feb 12;6:7. doi: 10.3389/fbioe.2018.00007. eCollection 2018.
8
Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H847-60. doi: 10.1152/ajpheart.00669.2015. Epub 2016 Jan 8.
9
Tissue-engineered lymphatic graft for the treatment of lymphedema.
J Surg Res. 2014 Dec;192(2):544-54. doi: 10.1016/j.jss.2014.07.059. Epub 2014 Jul 30.
10
Lymphatic anatomy and biomechanics.
J Physiol. 2011 Jun 15;589(Pt 12):2927-34. doi: 10.1113/jphysiol.2011.206672. Epub 2011 Apr 11.

本文引用的文献

1
Kinetics of fluid flux in the rat diaphragmatic submesothelial lymphatic lacunae.
Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1182-H1190. doi: 10.1152/ajpheart.00369.2008. Epub 2008 Jul 18.
2
Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1943-52. doi: 10.1152/ajpheart.01000.2005. Epub 2006 Dec 15.
3
Functional arrangement of rat diaphragmatic initial lymphatic network.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H876-85. doi: 10.1152/ajpheart.01276.2005. Epub 2006 Feb 17.
4
Shape and tension distribution of the active canine diaphragm.
Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R1021-7. doi: 10.1152/ajpregu.00499.2003.
5
6
Evidence for a second valve system in lymphatics: endothelial microvalves.
FASEB J. 2001 Aug;15(10):1711-7. doi: 10.1096/fj.01-0067com.
7
Shape and tension distribution of the passive rat diaphragm.
Am J Physiol Regul Integr Comp Physiol. 2001 Jan;280(1):R33-41. doi: 10.1152/ajpregu.2001.280.1.R33.
8
Subatmospheric pressure in the rabbit pleural lymphatic network.
J Physiol. 1999 Nov 1;520 Pt 3(Pt 3):761-9. doi: 10.1111/j.1469-7793.1999.00761.x.
9
Distribution, propagation, and coordination of contractile activity in lymphatics.
Am J Physiol. 1993 Apr;264(4 Pt 2):H1283-91. doi: 10.1152/ajpheart.1993.264.4.H1283.
10
Interstitial-lymphatic mechanisms in the control of extracellular fluid volume.
Physiol Rev. 1993 Jan;73(1):1-78. doi: 10.1152/physrev.1993.73.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验