Suppr超能文献

持续性高氧稳定健康个体在非快速动眼睡眠期间的呼吸。

Sustained hyperoxia stabilizes breathing in healthy individuals during NREM sleep.

机构信息

Medical Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, USA.

出版信息

J Appl Physiol (1985). 2010 Nov;109(5):1378-83. doi: 10.1152/japplphysiol.00453.2010. Epub 2010 Aug 19.

Abstract

The present study was designed to determine whether hyperoxia would lower the hypocapnic apneic threshold (AT) during non-rapid eye movement (NREM) sleep. Nasal noninvasive mechanical ventilation was used to induce hypocapnia and subsequent central apnea in healthy subjects during stable NREM sleep. Mechanical ventilation trials were conducted under normoxic (room air) and hyperoxic conditions (inspired PO(2) > 250 Torr) in a random order. The CO(2) reserve was defined as the minimal change in end-tidal PCO(2) (PET(CO(2))) between eupnea and hypocapnic central apnea. The PET(CO(2)) of the apnea closest to eupnea was designated as the AT. The hypocapnic ventilatory response was calculated as the change in ventilation below eupnea for a given change in PET(CO(2)). In nine participants, compared with room air, exposure to hyperoxia was associated with a significant decrease in eupneic PET(CO(2)) (37.5 ± 0.6 vs. 41.1 ± 0.6 Torr, P = 0.001), widening of the CO(2) reserve (-3.8 ± 0.8 vs. -2.0 ± 0.3 Torr, P = 0.03), and a subsequent decline in AT (33.3 ± 1.2 vs. 39.0 ± 0.7 Torr; P = 001). The hypocapnic ventilatory response was also decreased with hyperoxia. In conclusion, 1) hyperoxia was associated with a decreased AT and an increase in the magnitude of hypocapnia required for the development of central apnea. 2) Thus hyperoxia may mitigate the effects of hypocapnia on ventilatory motor output by lowering the hypocapnic ventilatory response and lowering the resting eupneic PET(CO(2)), thereby decreasing plant gain.

摘要

本研究旨在确定高氧是否会降低非快速眼动(NREM)睡眠期间的低碳酸血症性呼吸暂停阈值(AT)。在稳定的 NREM 睡眠期间,使用鼻无创机械通气在健康受试者中诱导低碳酸血症和随后的中枢性呼吸暂停。机械通气试验在常氧(室内空气)和高氧条件(吸入 PO₂>250 托)下以随机顺序进行。CO₂储备定义为在正常通气和低碳酸血症性中枢性呼吸暂停之间的呼气末 PCO₂(PETCO₂)的最小变化。与正常通气最接近的呼吸暂停的 PETCO₂被指定为 AT。低碳酸血症性通气反应被定义为在给定的 PETCO₂变化下通气量低于正常通气量的变化。在 9 名参与者中,与室内空气相比,暴露于高氧与正常通气的 PETCO₂显著降低(37.5 ± 0.6 与 41.1 ± 0.6 Torr,P = 0.001)、CO₂储备增加(-3.8 ± 0.8 与 -2.0 ± 0.3 Torr,P = 0.03)和 AT 下降(33.3 ± 1.2 与 39.0 ± 0.7 Torr;P = 001)。低碳酸血症性通气反应也随高氧而降低。总之,1)高氧与 AT 降低以及发展中枢性呼吸暂停所需的低碳酸血症幅度增加有关。2)因此,高氧可能通过降低低碳酸血症性通气反应和降低静息正常通气的 PETCO₂,从而降低植物增益,从而减轻低碳酸血症对通气运动输出的影响。

相似文献

1
Sustained hyperoxia stabilizes breathing in healthy individuals during NREM sleep.
J Appl Physiol (1985). 2010 Nov;109(5):1378-83. doi: 10.1152/japplphysiol.00453.2010. Epub 2010 Aug 19.
2
Effect of episodic hypoxia on the susceptibility to hypocapnic central apnea during NREM sleep.
J Appl Physiol (1985). 2010 Feb;108(2):369-77. doi: 10.1152/japplphysiol.00308.2009. Epub 2009 Nov 25.
3
Effect of gender on the development of hypocapnic apnea/hypopnea during NREM sleep.
J Appl Physiol (1985). 2000 Jul;89(1):192-9. doi: 10.1152/jappl.2000.89.1.192.
4
Post-hyperventilation hypopnea in humans during NREM sleep.
Respir Physiol. 1996 Feb;103(2):137-45. doi: 10.1016/0034-5687(95)00083-6.
5
Influence of arterial O2 on the susceptibility to posthyperventilation apnea during sleep.
J Appl Physiol (1985). 2006 Jan;100(1):171-7. doi: 10.1152/japplphysiol.00440.2005. Epub 2005 Sep 22.
6
Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs.
J Appl Physiol (1985). 2007 Dec;103(6):1942-9. doi: 10.1152/japplphysiol.00735.2007. Epub 2007 Oct 11.
7
Determinants of poststimulus potentiation in humans during NREM sleep.
J Appl Physiol (1985). 1992 Nov;73(5):1958-71. doi: 10.1152/jappl.1992.73.5.1958.
8
Effect of testosterone on the apneic threshold in women during NREM sleep.
J Appl Physiol (1985). 2003 Jan;94(1):101-7. doi: 10.1152/japplphysiol.00264.2002. Epub 2002 Sep 13.
9
Aging is associated with increased propensity for central apnea during NREM sleep.
J Appl Physiol (1985). 2018 Jan 1;124(1):83-90. doi: 10.1152/japplphysiol.00125.2017. Epub 2017 Oct 12.

引用本文的文献

2
Treatment-Emergent Central Apnea: Physiologic Mechanisms Informing Clinical Practice.
Chest. 2021 Jun;159(6):2449-2457. doi: 10.1016/j.chest.2021.01.036. Epub 2021 Jan 23.
3
Amelioration of sleep-disordered breathing with supplemental oxygen in older adults.
J Appl Physiol (1985). 2020 Dec 1;129(6):1441-1450. doi: 10.1152/japplphysiol.00253.2020. Epub 2020 Sep 24.
4
Effects of the Combination of Atomoxetine and Oxybutynin on OSA Endotypic Traits.
Chest. 2020 Jun;157(6):1626-1636. doi: 10.1016/j.chest.2020.01.012. Epub 2020 Jan 30.
5
Aging is associated with increased propensity for central apnea during NREM sleep.
J Appl Physiol (1985). 2018 Jan 1;124(1):83-90. doi: 10.1152/japplphysiol.00125.2017. Epub 2017 Oct 12.
6
Control of Ventilation in Health and Disease.
Chest. 2017 Apr;151(4):917-929. doi: 10.1016/j.chest.2016.12.002. Epub 2016 Dec 19.
7
Reduced respiratory neural activity elicits a long-lasting decrease in the CO threshold for apnea in anesthetized rats.
Exp Neurol. 2017 Jan;287(Pt 2):235-242. doi: 10.1016/j.expneurol.2016.07.020. Epub 2016 Jul 26.
8
Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.
J Neurosci. 2015 Jan 14;35(2):527-43. doi: 10.1523/JNEUROSCI.2923-14.2015.
9
Effects of hyperoxia and hypoxia on the physiological traits responsible for obstructive sleep apnoea.
J Physiol. 2014 Oct 15;592(20):4523-35. doi: 10.1113/jphysiol.2014.277210. Epub 2014 Aug 1.
10
Rebuttal from Magdy Younes.
J Physiol. 2014 Jul 15;592(14):2907-8. doi: 10.1113/jphysiol.2014.273284.

本文引用的文献

2
An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control.
Respir Physiol Neurobiol. 2010 Oct 31;173(3):288-97. doi: 10.1016/j.resp.2010.02.015. Epub 2010 Mar 4.
3
Pathophysiology of sleep apnea.
Physiol Rev. 2010 Jan;90(1):47-112. doi: 10.1152/physrev.00043.2008.
4
Effect of episodic hypoxia on the susceptibility to hypocapnic central apnea during NREM sleep.
J Appl Physiol (1985). 2010 Feb;108(2):369-77. doi: 10.1152/japplphysiol.00308.2009. Epub 2009 Nov 25.
6
Effect of oxygen in obstructive sleep apnea: role of loop gain.
Respir Physiol Neurobiol. 2008 Jul 31;162(2):144-51. doi: 10.1016/j.resp.2008.05.019. Epub 2008 Jun 3.
8
Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep.
Respir Physiol Neurobiol. 2008 Jan 1;160(1):65-75. doi: 10.1016/j.resp.2007.08.007. Epub 2007 Aug 25.
9
The influence of episodic hypoxia on upper airway collapsibility in subjects with obstructive sleep apnea.
J Appl Physiol (1985). 2007 Sep;103(3):911-6. doi: 10.1152/japplphysiol.01117.2006. Epub 2007 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验