Suppr超能文献

利用高分辨率非线性光学宏观技术评估角膜胶原组织。

Evaluating corneal collagen organization using high-resolution nonlinear optical macroscopy.

机构信息

Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine Medical Center, Orange, CA, USA.

出版信息

Eye Contact Lens. 2010 Sep;36(5):260-4. doi: 10.1097/ICL.0b013e3181ee8992.

Abstract

PURPOSE

Recent developments in nonlinear optical (NLO) imaging using femtosecond lasers provides a noninvasive method for detecting collagen fibers by imaging second harmonic-generated (SHG) signals. However, this technique is limited by the small field of view necessary to generate SHG signals. The purpose of this report is to review our efforts to greatly extend the field of view to assess the entire collagen structure using high-resolution macroscopic (HRMac) imaging.

METHODS

Intact human eyes were fixed under pressure, and the whole cornea (13-mm diameter) was excised and embedded in low-melting point agar for vibratome sectioning (200-300 microm). Sections were then optically scanned using a Zeiss LSM 510 Meta and Chameleon femtosecond laser (Carl Zeiss Microimaging Inc., Thornwood, NY) to generate SHG images. For each vibratome section, an overlapping series of three-dimensional data sets (466 x 466 x 150 microm) were taken, covering the entire tissue (15 mm x 6 mm area) using a motorized, mechanical stage. The three-dimensional data sets were then concatenated to generate an NLO-based tomograph.

RESULTS

The HRMac of the cornea yielded large macroscopic (80 megapixels per plane), three-dimensional tomographs with high resolution (0.81 microm lateral, 2.0 microm axial) in which individual collagen fibers (stromal lamellae) could be traced, segmented, and extracted. Three-dimensional reconstructions suggested that the anterior cornea comprises highly intertwined lamellae that insert into the anterior limiting lamina (Bowman's layer).

CONCLUSIONS

We conclude that HRMac using NLO-based tomography provides a powerful new tool to assess collagen structural organization within the cornea.

摘要

目的

飞秒激光的非线性光学(NLO)成像的最新发展提供了一种通过成像二次谐波产生(SHG)信号来检测胶原纤维的非侵入性方法。然而,这种技术受到产生 SHG 信号所需的小视场的限制。本报告的目的是回顾我们努力通过使用高分辨率宏观(HRMac)成像大大扩展视场以评估整个胶原结构的努力。

方法

在压力下固定完整的人眼,并切除整个角膜(直径 13 毫米)并嵌入低熔点琼脂中用于振动切片(200-300 微米)。然后使用蔡司 LSM 510 Meta 和变色龙飞秒激光器(卡尔蔡司微成像公司,Thornwood,NY)对切片进行光学扫描,以产生 SHG 图像。对于每个振动切片,使用电动机械台获取重叠的三维数据集(466 x 466 x 150 微米)系列,覆盖整个组织(15 毫米 x 6 毫米区域)。然后将三维数据集拼接在一起以生成基于 NLO 的断层扫描图。

结果

角膜的 HRMac 产生了大的宏观(每个平面 8000 万像素)、具有高分辨率(横向 0.81 微米,轴向 2.0 微米)的三维断层扫描图,其中可以追踪、分割和提取单个胶原纤维(基质层片)。三维重建表明,前角膜由高度交织的层片组成,这些层片插入前限界层(Bowman 层)。

结论

我们得出结论,基于 NLO 的 HRMac 断层扫描提供了一种强大的新工具,可用于评估角膜内胶原结构组织。

相似文献

1
Evaluating corneal collagen organization using high-resolution nonlinear optical macroscopy.
Eye Contact Lens. 2010 Sep;36(5):260-4. doi: 10.1097/ICL.0b013e3181ee8992.
2
Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics.
Invest Ophthalmol Vis Sci. 2011 Nov 11;52(12):8818-27. doi: 10.1167/iovs.11-8070.
3
Detection of subepithelial fibrosis associated with corneal stromal edema by second harmonic generation imaging microscopy.
Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3145-50. doi: 10.1167/iovs.08-3309. Epub 2009 Feb 21.
4
Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals.
J Cataract Refract Surg. 2006 Nov;32(11):1784-91. doi: 10.1016/j.jcrs.2006.08.027.
5
Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma.
Invest Ophthalmol Vis Sci. 2013 Nov 5;54(12):7293-301. doi: 10.1167/iovs.13-13150.
7
Second-harmonic imaging microscopy of normal human and keratoconus cornea.
Invest Ophthalmol Vis Sci. 2007 Mar;48(3):1087-94. doi: 10.1167/iovs.06-1177.
9
Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea.
Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5622-9. doi: 10.1167/iovs.15-17129.

引用本文的文献

1
The Corneal Structure of the Yellow-Legged Gull, Larus michahellis (Naumann, 1840).
J Morphol. 2024 Dec;285(12):e70015. doi: 10.1002/jmor.70015.
5
The relationship between keratan sulfate glycosaminoglycan density and mechanical stiffening of CXL treatment.
Exp Eye Res. 2023 Sep;234:109570. doi: 10.1016/j.exer.2023.109570. Epub 2023 Jul 15.
6
The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning.
Exp Eye Res. 2023 Aug;233:109523. doi: 10.1016/j.exer.2023.109523. Epub 2023 Jun 2.
7
Distribution of 50-layer corneal densitometry values and related factors.
Int Ophthalmol. 2023 Sep;43(9):3165-3173. doi: 10.1007/s10792-023-02716-z. Epub 2023 Apr 28.
10
A noninvasive fluorescence imaging-based platform measures 3D anisotropic extracellular diffusion.
Nat Commun. 2021 Mar 26;12(1):1913. doi: 10.1038/s41467-021-22221-0.

本文引用的文献

1
Second harmonic light generation in the rabbit cornea.
Appl Opt. 1982 Apr 15;21(8):1516-8. doi: 10.1364/AO.21.001516.
2
High resolution three-dimensional reconstruction of the collagenous matrix of the human optic nerve head.
Brain Res Bull. 2010 Feb 15;81(2-3):339-48. doi: 10.1016/j.brainresbull.2009.06.001. Epub 2009 Jun 11.
4
Second-harmonic imaging microscopy of normal human and keratoconus cornea.
Invest Ophthalmol Vis Sci. 2007 Mar;48(3):1087-94. doi: 10.1167/iovs.06-1177.
5
Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals.
J Cataract Refract Surg. 2006 Nov;32(11):1784-91. doi: 10.1016/j.jcrs.2006.08.027.
6
Changes in collagen orientation and distribution in keratoconus corneas.
Invest Ophthalmol Vis Sci. 2005 Jun;46(6):1948-56. doi: 10.1167/iovs.04-1253.
7
Lamellar orientation in human cornea in relation to mechanical properties.
J Struct Biol. 2005 Jan;149(1):1-6. doi: 10.1016/j.jsb.2004.08.009.
8
The organization of collagen in the corneal stroma.
Exp Eye Res. 2004 Mar;78(3):503-12. doi: 10.1016/j.exer.2003.07.003.
9
X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus.
Structure. 2004 Feb;12(2):249-56. doi: 10.1016/j.str.2004.01.002.
10
The structure and transparency of the cornea.
J Physiol. 1957 Apr 30;136(2):263-86. doi: 10.1113/jphysiol.1957.sp005758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验