Clemson-MUSC Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC, USA.
Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
Nat Commun. 2021 Mar 26;12(1):1913. doi: 10.1038/s41467-021-22221-0.
Diffusion is a major molecular transport mechanism in biological systems. Quantifying direction-dependent (i.e., anisotropic) diffusion is vitally important to depicting how the three-dimensional (3D) tissue structure and composition affect the biochemical environment, and thus define tissue functions. However, a tool for noninvasively measuring the 3D anisotropic extracellular diffusion of biorelevant molecules is not yet available. Here, we present light-sheet imaging-based Fourier transform fluorescence recovery after photobleaching (LiFT-FRAP), which noninvasively determines 3D diffusion tensors of various biomolecules with diffusivities up to 51 µm s, reaching the physiological diffusivity range in most biological systems. Using cornea as an example, LiFT-FRAP reveals fundamental limitations of current invasive two-dimensional diffusion measurements, which have drawn controversial conclusions on extracellular diffusion in healthy and clinically treated tissues. Moreover, LiFT-FRAP demonstrates that tissue structural or compositional changes caused by diseases or scaffold fabrication yield direction-dependent diffusion changes. These results demonstrate LiFT-FRAP as a powerful platform technology for studying disease mechanisms, advancing clinical outcomes, and improving tissue engineering.
扩散是生物系统中的一种主要分子传输机制。定量描述方向依赖性(即各向异性)的扩散对于描绘三维(3D)组织结构和组成如何影响生化环境,从而定义组织功能至关重要。然而,目前还没有一种非侵入性测量生物相关分子三维各向异性细胞外扩散的工具。在这里,我们提出了基于光片成像的傅里叶变换荧光漂白后恢复(LiFT-FRAP),它可以非侵入性地确定各种生物分子的 3D 扩散张量,其扩散率高达 51 µm s,达到了大多数生物系统中生理扩散率的范围。我们以角膜为例,揭示了当前侵入性二维扩散测量的基本局限性,这些局限性对健康和经临床治疗的组织中的细胞外扩散得出了有争议的结论。此外,LiFT-FRAP 表明,疾病或支架制造引起的组织结构或组成变化会导致扩散方向的变化。这些结果表明,LiFT-FRAP 是一种强大的平台技术,可用于研究疾病机制、提高临床疗效和改善组织工程。