Suppr超能文献

一种用于模拟人红细胞非线性弹性和粘弹性行为的新型双层、耦合有限元方法。

A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.

机构信息

Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, Garching, Germany.

出版信息

Biomech Model Mechanobiol. 2011 Jul;10(4):445-59. doi: 10.1007/s10237-010-0246-2. Epub 2010 Aug 20.

Abstract

A novel finite element approach is presented to simulate the mechanical behavior of human red blood cells (RBC, erythrocytes). As the RBC membrane comprises a phospholipid bilayer with an intervening protein network, we propose to model the membrane with two distinct layers. The fairly complex characteristics of the very thin lipid bilayer are represented by special incompressible solid shell elements and an anisotropic viscoelastic constitutive model. Properties of the protein network are modeled with an isotropic hyperelastic third-order material. The elastic behavior of the model is validated with existing optical tweezers studies with quasi-static deformations. Employing material parameters consistent with literature, simulation results are in excellent agreement with experimental data. Available models in literature neglect either the surface area conservation of the RBC membrane or realistic loading conditions of the optical tweezers experiments. The importance of these modeling assumptions, that are both included in this study, are discussed and their influence quantified. For the simulation of the dynamic motion of RBC, the model is extended to incorporate the cytoplasm. This is realized with a monolithic fully coupled fluid-structure interaction simulation, where the fluid is described by the incompressible Navier-Stokes equations in an arbitrary Lagrangian Eulerian framework. It is shown that both membrane viscosity and cytoplasm viscosity have significant influence on simulation results. Characteristic recovery times and energy dissipation for varying strain rates in dynamic laser trap experiments are calculated for the first time and are found to be comparable with experimental data.

摘要

提出了一种新的有限元方法来模拟人类红细胞(RBC,红细胞)的力学行为。由于 RBC 膜由具有中间蛋白质网络的磷脂双层组成,因此我们建议使用两个不同的层来建模该膜。非常薄的脂质双层的相当复杂的特性由特殊的不可压缩固体壳单元和各向异性粘弹性本构模型表示。蛋白质网络的特性通过各向同性超弹性三阶材料进行建模。该模型的弹性行为通过与现有光镊研究的准静态变形进行验证。使用与文献一致的材料参数,模拟结果与实验数据非常吻合。文献中的现有模型要么忽略 RBC 膜的表面积守恒,要么忽略光镊实验的实际加载条件。本研究讨论了这些建模假设的重要性,并对其影响进行了量化。为了模拟 RBC 的动态运动,该模型扩展到包含细胞质。这是通过整体完全耦合流固相互作用模拟来实现的,其中流体在任意拉格朗日欧拉框架中由不可压缩纳维-斯托克斯方程描述。结果表明,膜粘度和细胞质粘度对模拟结果有显著影响。首次计算了动态激光阱实验中不同应变速率的特征恢复时间和能量耗散,并发现与实验数据相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验