Suppr超能文献

多巴胺在前额叶皮层神经元工作记忆维持中的作用:输入驱动与内部驱动网络。

The role of dopamine in the maintenance of working memory in prefrontal cortex neurons: input-driven versus internally-driven networks.

机构信息

Department of Cognitive and Neural Systems, Boston University, 677 Beacon St., Boston, MA 02215, USA.

出版信息

Int J Neural Syst. 2010 Aug;20(4):249-65. doi: 10.1142/S0129065710002401.

Abstract

How do organisms select and organize relevant sensory input in working memory (WM) in order to deal with constantly changing environmental cues? Once information has been stored in WM, how is it protected from and altered by the continuous stream of sensory input and internally generated planning? The present study proposes a novel role for dopamine (DA) in the maintenance of WM in the prefrontal cortex (Pfc) neurons that begins to address these issues. In particular, DA mediates the alternation of the Pfc network between input-driven and internally-driven states, which in turn drives WM updates and storage. A biologically inspired neural network model of Pfc is formulated to provide a link between the mechanisms of state switching and the biophysical properties of Pfc neurons. This model belongs to the recurrent competitive fields(33) class of dynamical systems which have been extensively mathematically characterized and exhibit the two functional states of interest: input-driven and internally-driven. This hypothesis was tested with two working memory tasks of increasing difficulty: a simple working memory task and a delayed alternation task. The results suggest that optimal WM storage in spite of noise is achieved with a phasic DA input followed by a lower DA sustained activity. Hypo and hyper-dopaminergic activity that alter this ideal pattern lead to increased distractibility from non-relevant pattern and prolonged perseverations on presented patterns, respectively.

摘要

生物体如何在工作记忆 (WM) 中选择和组织相关的感觉输入,以应对不断变化的环境线索?一旦信息被存储在 WM 中,它如何免受连续的感觉输入和内部生成的计划的影响,并进行改变?本研究提出了多巴胺 (DA) 在维持前额叶皮层 (Pfc) 神经元 WM 中的新作用,开始解决这些问题。具体来说,DA 介导 Pfc 网络在输入驱动和内部驱动状态之间的交替,这反过来又驱动 WM 更新和存储。提出了一个基于生物启发的 Pfc 神经网络模型,以提供状态切换机制与 Pfc 神经元生物物理特性之间的联系。该模型属于动态系统的递归竞争场 (33) 类,已经进行了广泛的数学描述,并表现出两种感兴趣的功能状态:输入驱动和内部驱动。使用两个难度递增的工作记忆任务来检验该假设:一个简单的工作记忆任务和一个延迟交替任务。结果表明,尽管存在噪声,但通过短暂的 DA 输入 followed by 较低的 DA 持续活动,可以实现最佳的 WM 存储。改变这种理想模式的低多巴胺和高多巴胺活动分别导致对非相关模式的分心增加和对呈现模式的持续保持时间延长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验