Murray John D, Bernacchia Alberto, Roy Nicholas A, Constantinidis Christos, Romo Ranulfo, Wang Xiao-Jing
Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510.
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):394-399. doi: 10.1073/pnas.1619449114. Epub 2016 Dec 27.
Working memory (WM) is a cognitive function for temporary maintenance and manipulation of information, which requires conversion of stimulus-driven signals into internal representations that are maintained across seconds-long mnemonic delays. Within primate prefrontal cortex (PFC), a critical node of the brain's WM network, neurons show stimulus-selective persistent activity during WM, but many of them exhibit strong temporal dynamics and heterogeneity, raising the questions of whether, and how, neuronal populations in PFC maintain stable mnemonic representations of stimuli during WM. Here we show that despite complex and heterogeneous temporal dynamics in single-neuron activity, PFC activity is endowed with a population-level coding of the mnemonic stimulus that is stable and robust throughout WM maintenance. We applied population-level analyses to hundreds of recorded single neurons from lateral PFC of monkeys performing two seminal tasks that demand parametric WM: oculomotor delayed response and vibrotactile delayed discrimination. We found that the high-dimensional state space of PFC population activity contains a low-dimensional subspace in which stimulus representations are stable across time during the cue and delay epochs, enabling robust and generalizable decoding compared with time-optimized subspaces. To explore potential mechanisms, we applied these same population-level analyses to theoretical neural circuit models of WM activity. Three previously proposed models failed to capture the key population-level features observed empirically. We propose network connectivity properties, implemented in a linear network model, which can underlie these features. This work uncovers stable population-level WM representations in PFC, despite strong temporal neural dynamics, thereby providing insights into neural circuit mechanisms supporting WM.
工作记忆(WM)是一种用于临时维持和处理信息的认知功能,它需要将刺激驱动的信号转换为内部表征,并在长达数秒的记忆延迟中保持这些表征。在灵长类动物前额叶皮层(PFC)这一脑WM网络的关键节点内,神经元在WM期间表现出刺激选择性持续活动,但其中许多神经元表现出强烈的时间动态性和异质性,这就引发了PFC中的神经元群体在WM期间是否以及如何维持刺激的稳定记忆表征的问题。在这里,我们表明,尽管单神经元活动存在复杂且异质的时间动态,但PFC活动具有记忆刺激的群体水平编码,该编码在整个WM维持过程中是稳定且稳健的。我们对来自执行两项需要参数化WM的开创性任务的猴子外侧PFC的数百个记录的单神经元进行了群体水平分析:动眼延迟反应和振动触觉延迟辨别。我们发现,PFC群体活动的高维状态空间包含一个低维子空间,在该子空间中,刺激表征在提示和延迟阶段随时间保持稳定,与时间优化子空间相比,能够实现稳健且可推广的解码。为了探索潜在机制,我们将这些相同的群体水平分析应用于WM活动的理论神经回路模型。之前提出的三个模型未能捕捉到实验观察到的关键群体水平特征。我们提出了在线性网络模型中实现的网络连接属性,这些属性可以作为这些特征的基础。这项工作揭示了PFC中稳定的群体水平WM表征,尽管存在强烈的神经时间动态,从而为支持WM的神经回路机制提供了见解。