Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Colorado 80309, USA.
Anal Chem. 2010 Oct 1;82(19):7965-72. doi: 10.1021/ac101437w.
The aerosol direct effect, which characterizes the interaction of radiation with aerosol particles, remains poorly understood. By determining aerosol composition, shape, and internal structure, we can predict aerosol optical properties. In this study, we performed a feasibility study to determine if tapping-mode atomic force microscopy (TM-AFM) and Raman microscopy can be effectively used to obtain information on aerosol composition, shape, and structure. These techniques are advantageous because they operate under ambient pressure and temperature. We worked with model aerosol particles composed of organic components of varying solubility mixed with ammonium sulfate. In particular, we explored whether aerosols could be differentiated on the basis of the solubility of the organic component. We also characterized the aerosol internal structure and investigated how this structure changes as the solubility of the organic compound is varied. To obtain indirect chemical information from AFM, we imaged particles supported on both polar, SiO(x)/Si(100), and nonpolar, highly ordered pyrolytic graphite, surfaces. We have found that AFM can be used to differentiate the solubility of the organic component. In some cases, AFM can also be used to identify internal structure. With Raman microscopy, we can differentiate between core-shell structures and homogeneous structures. Surprisingly, we find that even for the most soluble compounds, core-shell structures are observed. To discuss consequences of our results for climate studies, we calculate the difference in radiative forcing caused by having a core-shell aerosol rather than a homogeneous particle. Overall, these techniques are promising for characterizing composition, shape, and internal structure of atmospheric particles.
气溶胶的直接效应,其特点是辐射与气溶胶颗粒的相互作用,仍然知之甚少。通过确定气溶胶的组成、形状和内部结构,我们可以预测气溶胶的光学性质。在这项研究中,我们进行了一项可行性研究,以确定原子力显微镜(TM-AFM)和拉曼显微镜是否可以有效地用于获取有关气溶胶组成、形状和结构的信息。这些技术具有优势,因为它们在环境压力和温度下运行。我们使用由不同溶解度的有机成分与硫酸铵混合而成的模型气溶胶颗粒进行了研究。特别是,我们探索了是否可以根据有机成分的溶解度来区分气溶胶。我们还对气溶胶的内部结构进行了表征,并研究了随着有机化合物溶解度的变化,这种结构如何变化。为了从原子力显微镜中获得间接化学信息,我们对在极性(SiO(x)/Si(100))和非极性(高度有序热解石墨)表面上支撑的颗粒进行了成像。我们发现原子力显微镜可用于区分有机成分的溶解度。在某些情况下,原子力显微镜也可用于识别内部结构。通过拉曼显微镜,我们可以区分核壳结构和均匀结构。令人惊讶的是,我们发现即使对于最易溶解的化合物,也观察到核壳结构。为了讨论我们的结果对气候研究的影响,我们计算了具有核壳气溶胶而不是均匀颗粒引起的辐射强迫的差异。总的来说,这些技术对于大气粒子的组成、形状和内部结构的表征具有广阔的应用前景。