Suppr超能文献

蛋白质与 DNA 识别的主题系统分类与分析。

Systematic classification and analysis of themes in protein-DNA recognition.

机构信息

Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China.

出版信息

J Chem Inf Model. 2010 Aug 23;50(8):1476-88. doi: 10.1021/ci100145d.

Abstract

Protein-DNA recognition plays a central role in the regulation of gene expression. With the rapidly increasing number of protein-DNA complex structures available at atomic resolution in recent years, a systematic, complete, and intuitive framework to clarify the intrinsic relationship between the global binding modes of these complexes is needed. In this work, we modified, extended, and applied previously defined RNA-recognition themes to describe protein-DNA recognition and used a protocol that incorporates automatic methods into manual inspection to plant a comprehensive classification tree for currently available high-quality protein-DNA structures. Further, a nonredundant (representative) data set consisting of 200 thematically diverse complexes was extracted from the leaves of the classification tree by using a locally sensitive interface comparison algorithm. On the basis of the representative data set, various physical and chemical properties associated with protein-DNA interactions were analyzed using empirical or semiempirical methods. We also examined the individual energetic components involved in protein-DNA interactions and highlighted the importance of conformational entropy, which has been almost completely ignored in previous studies of protein-DNA binding energy.

摘要

蛋白质与 DNA 的相互作用在基因表达调控中起着核心作用。近年来,随着越来越多的蛋白质-DNA 复合物结构以原子分辨率的形式出现,我们需要一个系统的、完整的、直观的框架来阐明这些复合物的整体结合模式之间的内在关系。在这项工作中,我们修改、扩展并应用了先前定义的 RNA 识别主题来描述蛋白质-DNA 识别,并使用一种将自动方法与手动检查相结合的方案,为当前可用的高质量蛋白质-DNA 结构种植了一个全面的分类树。此外,通过使用局部敏感接口比较算法,从分类树的叶子中提取出一个由 200 个主题多样的复合物组成的非冗余(代表性)数据集。基于代表性数据集,我们使用经验或半经验方法分析了与蛋白质-DNA 相互作用相关的各种物理和化学性质。我们还检查了涉及蛋白质-DNA 相互作用的各个能量组成部分,并强调了构象熵的重要性,这在以前的蛋白质-DNA 结合能研究中几乎完全被忽视了。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验