Suppr超能文献

低剂量(60cGy)(56)Fe 重离子辐射导致大鼠海马突触体中谷氨酸能易释放池持续减少。

Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes.

机构信息

Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA.

出版信息

Radiat Res. 2010 Nov;174(5):618-23. doi: 10.1667/RR1988.1. Epub 2010 Aug 12.

Abstract

Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In ground-based experiments, exposure to HZE-particle radiation induces pronounced deficits in hippocampus-dependent learning and memory in rodents. The mechanisms underlying these impairments are mostly unknown, but some studies suggest that HZE-particle exposure perturbs the regulation of long-term potentiation (LTP) at the CA1 synapse in the hippocampus. In this study, we irradiated rats with 60 cGy of 1 GeV (56)Fe-particle radiation and established its impact on hippocampal glutamatergic neurotransmissions at 3 and 6 months after exposure. Exposure to 60 cGy (56)Fe-particle radiation significantly (P < 0.05) reduced hyperosmotic sucrose evoked [(3)H]-glutamate release from hippocampal synaptosomes, a measure of the readily releasable vesicular pool (RRP). This HZE-particle-induced reduction in the glutamatergic RRP persisted for at least 6 months after exposure. At 90 days postirradiation, there was a significant reduction in the expression of the NR1, NR2A and NR2B subunits of the glutamatergic NMDA receptor. The level of the NR2A protein remained suppressed at 180 days postirradiation, but the level of NR2B and NR1 proteins returned to or exceeded normal levels, respectively. Overall, this study shows that hippocampal glutamatergic transmission is sensitive to relative low doses of (56)Fe particles. Whether the observed HZE-particle-induced change in glutamate transmission, which plays a critical role in learning and memory, is the cause of HZE-particle-induced neurocognitive impairment requires further investigation.

摘要

宇宙辐射(GCR)被认为是长期太空旅行中的潜在健康风险,对中枢神经系统(CNS)构成重大威胁。GCR 中最具危害性的成分是 HZE(高质量、高电荷(Z)、高能量)粒子,例如(56)Fe。在地面实验中,暴露于 HZE 粒子辐射会导致啮齿动物在海马体依赖型学习和记忆方面出现明显缺陷。这些损伤的机制大多未知,但一些研究表明,HZE 粒子暴露会扰乱海马体 CA1 突触处长时程增强(LTP)的调节。在这项研究中,我们用 1 GeV 的 60 cGy(56)Fe 粒子照射大鼠,并在照射后 3 个月和 6 个月评估其对海马谷氨酸能神经传递的影响。暴露于 60 cGy(56)Fe 粒子辐射显著(P < 0.05)降低了海马体突触小体中高渗蔗糖诱发的[3H]-谷氨酸释放,这是易释放囊泡池(RRP)的一个测量指标。这种 HZE 粒子诱导的谷氨酸能 RRP 减少至少在照射后 6 个月内持续存在。在照射后 90 天,谷氨酸能 NMDA 受体的 NR1、NR2A 和 NR2B 亚基表达显著减少。NR2A 蛋白水平在照射后 180 天仍受到抑制,但 NR2B 和 NR1 蛋白水平分别恢复到或超过正常水平。总体而言,这项研究表明,海马体谷氨酸能传递对相对低剂量的(56)Fe 粒子敏感。在学习和记忆中起着关键作用的谷氨酸传递的这种观察到的 HZE 粒子诱导变化是否是 HZE 粒子诱导神经认知障碍的原因,还需要进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验